scholarly journals First-principle based modeling of urea decomposition kinetics in aqueous solutions

2016 ◽  
Vol 664 ◽  
pp. 149-153 ◽  
Author(s):  
André Nicolle ◽  
Stefania Cagnina ◽  
Theodorus de Bruin
2014 ◽  
Vol 44 (3) ◽  
pp. 195-201
Author(s):  
L. KUNIGK ◽  
S. P. GALIZIA ◽  
R.T. K. SHIKISHIMA ◽  
R. GEDRAITE ◽  
C. H. JURKIEWICZ

Peracetic acid (PAA) is a strong oxidant used by the food industry as a sanitizer, in medical area as a disinfectant and by the textiles and paper industries as a bleacher. Its decomposition rate is an important parameter in these applications. The main purpose of this paper is to study the decomposition kinetics of PAA between 25 and 45 °C in solutions with pH 3.11, 5.0 and 7.0. The decomposition of PAA is a first-order reaction for all solutions and temperatures studied. The rate constants were between 2.08·10-3 and 9.44·10-3 h-1 (pH 3.11), between 2.61·10-3 and 16.69·10-3 h-1 (pH 5.0) and between 7.50·10-3 and 47.63·10-3 h-1 (pH 7.0). The activation energy of PAA decomposition in aqueous solutions are 58.36 and 72.89 kJ·mol-1 when pH was 3.11 and 5.0, respectively.


2004 ◽  
Vol 38 (7) ◽  
pp. 2111-2119 ◽  
Author(s):  
Hongxia Lei ◽  
Benito J. Mariñas ◽  
Roger A. Minear

1989 ◽  
Vol 55 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Th. Cachet ◽  
G. Van den Mooter ◽  
R. Hauchecorne ◽  
C. Vinckier ◽  
J. Hoogmartens

1987 ◽  
Vol 9 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Eddie P. Minchew ◽  
Joseph P. Gould ◽  
F. Michael Saunders

Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document