Non-covalent interactions of hydrogen cyanide and acetonitrile with the quinoline radical cation via ionic hydrogen bonding

2020 ◽  
Vol 754 ◽  
pp. 137744
Author(s):  
Kyle A. Mason ◽  
Adam C. Pearcy ◽  
Ka Un Lao ◽  
Zachary A. Christensen ◽  
M. Samy El-Shall
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Naoki Haruta ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
...  

AbstractAnions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2858
Author(s):  
Goar Sánchez

Non-covalent interactions have attracted the scientific attention during last decades as observed by the numerous studies in the literature [...]


2016 ◽  
Vol 14 (40) ◽  
pp. 9588-9597 ◽  
Author(s):  
Yunsheng Xue ◽  
Yuhui Wang ◽  
Zhongyan Cao ◽  
Jian Zhou ◽  
Zhao-Xu Chen

DFT calculations reveal the viability of the two possible ion pair-hydrogen bonding and Brønsted acid-hydrogen bonding dual activation modes.


2015 ◽  
Vol 6 (5) ◽  
pp. 721-731 ◽  
Author(s):  
Fei Li ◽  
Kevin G. Yager ◽  
Noel M. Dawson ◽  
Ying-Bing Jiang ◽  
Kevin J. Malloy ◽  
...  

Core–shell P3HT/fullerene composite nanofibers were obtained using supramolecular chemistry involving cooperative orthogonal non-covalent interactions.


IUCrData ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Grace I. Anderson ◽  
Sophia Bellia ◽  
Matthias Zeller ◽  
Patrick C. Hillesheim ◽  
Arsalan Mirjafari

Numerous non-covalent interactions link together discrete molecules in the crystal structure of the title compound, 2C20H26N2O2 2+·4Cl−·H2O {systematic name: 4-[(5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl)(hydroxy)methyl]-6-methoxyquinolin-1-ium dichloride hemihydrate}. A combination of hydrogen bonding between acidic H atoms and the anions in the asymmetric unit forms a portion of the observed hydrogen-bonded network. π–π interactions between the aromatic portions of the cation appear to play a role in the formation of the long-range ordering. One ethylene double bond was found to be disordered. The disorder extends to the neighboring carbon and hydrogen atoms.


2019 ◽  
Author(s):  
Jan Řezáč

The Non-Covalent Interactions Atlas project (www.nciatlas.org) aims to cover a wide range of non-covalent interactions with a new generation of benchmark data sets. This paper presents the first two data sets focused on hydrogen bonding: HB375, featuring neutral systems, and IHB100 for ionic H-bonds. Both data sets are complemented by ten-point dissociation curves (HB375x10, IHB100x10). The interaction energies are extrapolated to the CCSD(T)/CBS limit from calculations in large basis sets. The paper also summarizes the design principles that will be used to construct the subsequent data sets in the series. The testing of DFT-D methods on the HB375 set has revealed interesting, previously unnoticed issues. The application of the new data to the testing and parameterization of semiempirical QM methods is also discussed.


Sign in / Sign up

Export Citation Format

Share Document