On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data

2003 ◽  
Vol 337 (8) ◽  
pp. 523-526 ◽  
Author(s):  
Luc Molinet ◽  
Francis Ribaud
Author(s):  
Lee Da-tsin(Li Ta-tsien) ◽  
Shi Jia-hong

SynopsisIn this paper, the existence of global smooth solutions and the formation of singularities of solutions for strictly hyperbolic systems with general eigenvalues are discussed for the Cauchy problem with essentially periodic small initial data or nonperiodic initial data. A result of Klainerman and Majda is thus extended to the general case.


Author(s):  
Guowei Liu ◽  
Wei Wang ◽  
Qiuju Xu

In this paper, we study the Cauchy problem for a generalized Boussinesq type equation in $\mathbb{R}^n$. We establish a dispersive estimate for the linear group associated with the generalized Boussinesq type equation. As applications, the global existence, decay and scattering of solutions are established for small initial data.


2020 ◽  
Vol 32 (6) ◽  
pp. 1575-1598
Author(s):  
Zhaohui Huo ◽  
Yueling Jia

AbstractThe Cauchy problem of the 2D Zakharov–Kuznetsov equation {\partial_{t}u+\partial_{x}(\partial_{xx}+\partial_{yy})u+uu_{x}=0} is considered. It is shown that the 2D Z-K equation is locally well-posed in the endpoint Sobolev space {H^{-1/4}}, and it is globally well-posed in {H^{-1/4}} with small initial data. In this paper, we mainly establish some new dyadic bilinear estimates to obtain the results, where the main novelty is to parametrize the singularity of the resonance function in terms of a univariate polynomial.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3627-3639 ◽  
Author(s):  
Ruizhao Zia

This paper is dedicated to the Cauchy problem of the incompressible Oldroyd-B model with general coupling constant ? ?(0,1). It is shown that this set of equations admits a unique global solution in a certain hybrid Besov spaces for small initial data in ?Hs ??Bd/2 2,1 with - d/2 < s < d2-1. In particular, if d ? 3, and taking s=0, then ?H0 ? ?Bd/2 2,1 = B d/2 2,1. Since Bt2,? ? Bd/2 2,1 if t > d/2, this result extends the work by Chen and Miao [Nonlinear Anal.,68(2008), 1928-1939].


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1247-1257 ◽  
Author(s):  
Shijin Ding ◽  
Jinrui Huang ◽  
Fengguang Xia

We consider the Cauchy problem for incompressible hydrodynamic flow of nematic liquid crystals in three dimensions. We prove the global existence and uniqueness of the strong solutions with nonnegative p0 and small initial data.


2021 ◽  
Vol 76 (5) ◽  
pp. 745-819
Author(s):  
S. Yu. Dobrokhotov ◽  
V. E. Nazaikinskii ◽  
A. I. Shafarevich

Abstract We say that the initial data in the Cauchy problem are localized if they are given by functions concentrated in a neighbourhood of a submanifold of positive codimension, and the size of this neighbourhood depends on a small parameter and tends to zero together with the parameter. Although the solutions of linear differential and pseudodifferential equations with localized initial data constitute a relatively narrow subclass of the set of all solutions, they are very important from the point of view of physical applications. Such solutions, which arise in many branches of mathematical physics, describe the propagation of perturbations of various natural phenomena (tsunami waves caused by an underwater earthquake, electromagnetic waves emitted by antennas, etc.), and there is extensive literature devoted to such solutions (including the study of their asymptotic behaviour). It is natural to say that an asymptotics is efficient when it makes it possible to examine the problem quickly enough with relatively few computations. The notion of efficiency depends on the available computational tools and has changed significantly with the advent of Wolfram Mathematica, Matlab, and similar computing systems, which provide fundamentally new possibilities for the operational implementation and visualization of mathematical constructions, but which also impose new requirements on the construction of the asymptotics. We give an overview of modern methods for constructing efficient asymptotics in problems with localized initial data. The class of equations and systems under consideration includes the Schrödinger and Dirac equations, the Maxwell equations, the linearized gasdynamic and hydrodynamic equations, the equations of the linear theory of surface water waves, the equations of the theory of elasticity, the acoustic equations, and so on. Bibliography: 109 titles.


Sign in / Sign up

Export Citation Format

Share Document