scholarly journals Investigation of suitability of the method of volume averaging for the study of heat transfer in superconducting accelerator magnet cooled by superfluid helium

Cryogenics ◽  
2013 ◽  
Vol 53 ◽  
pp. 128-134 ◽  
Author(s):  
Hervé Allain ◽  
Rob Van Weelderen ◽  
Bertrand Baudouy ◽  
Michel Quintard ◽  
Marc Prat ◽  
...  
1982 ◽  
Vol 43 (4) ◽  
pp. 1172-1186 ◽  
Author(s):  
S. K. Nemirovskii

2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
Th. Gradt ◽  
Z. Szücs ◽  
H.-D. Denner ◽  
G. Klipping

Author(s):  
Michel Quintard ◽  
Stephen Whitaker

Most porous media of practical importance are hierarchical in nature; that is, they are characterized by more than one length-scale. When these length-scales are disparate, the hierarchical structure can be analyzed by the method of volume averaging (Anderson and Jackson, 1967; Marie, 1967; Slattery, 1967; Whitaker, 1967). In this approach, macroscopic quantities at a given length-scale are defined in terms of a boundary value problem that describes the phenomena at a smaller length-scale, and information is filtered from one scale to another by a series of volume and area integrals. Other methods, such as ensemble averaging (Matheron, 1965; Dagan, 1989) or homogenization theory (Bensoussan et al, 1978; Sanchez-Palencia, 1980), have been used to study hierarchical systems, and developments specific to the problems under consideration in this chapter can be found in Bourgeat (1984), Auriault (1987), Amaziane and Bourgeat (1988), and Sáez et al. (1989). The transformation from the Darcy scale to the large scale is a recurrent problem in reservoir and aquifer engineering. A detailed description of reservoir properties is available through geostatistical analysis (Journel, 1996) on a fine grid with a length-scale much smaller than the scale of the blocks in the reservoir simulator. “Effective” or “pseudo” properties are assigned to the coarse grid blocks, while the forms of the large-scale equations are required to be the same as those used at the Darcy scale (Coats et al., 1967; Hearn, 1971; Jacks et al., 1972; Kyte and Berry, 1975; Dake, 1978; Killough and Foster, 1979; Yokoyama and Lake, 1981; Kortekaas, 1983; Thomas, 1983; Kossack et al., 1990). A detailed discussion of the comparison between the several approaches is beyond the scope of this chapter; however, one can read Bourgeat et al. (1988) for an introductory comparison between the method of volume averaging and the homogenization theory, and Ahmadi et al. (1993) for a discussion of the various classes of pseudofunction theories.


Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a novel compact modeling method based on the volume-averaging technique and its application to the analysis of fluid flow and heat transfer in pin fin heat sinks are presented. The pin fin heat sink is modeled as a porous medium. The volume-averaged momentum and energy equations for fluid flow and heat transfer in pin fin heat sinks are obtained using the local volume-averaging method. The permeability, the Ergun constant and the interstitial heat transfer coefficient required to solve these equations are determined experimentally. To validate the compact model proposed in this paper, 20 aluminum pin fin heat sinks having a 101.43 mm × 101.43 mm base size are tested with an inlet velocity ranging from 1 m/s to 5 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. Pressure drop and heat transfer characteristics of pin fin heat sinks obtained from the porous medium approach are compared with experimental results. Upon comparison, the porous medium approach is shown to predict accurately the pressure drop and heat transfer characteristics of pin fin heat sinks. Finally, surface porosities of the pin fin heat sink for which the thermal resistance of the heat sink is minimal are obtained under constraints on pumping power and heat sink size. The optimized pin fin heat sinks are shown to be superior to the optimized straight fin heat sinks in thermal performance by about 50% under the same constraints on pumping power and heat sink size.


Author(s):  
Ivan Catton ◽  
Kunzhong Hu

Developments of volume averaging theory (VAT) used to describe transport phenomena in heterogeneous media are applied to optimization of heat dissipation from a heterogeneous media. The media is a porous media representation of a pin fin heat sink (a heterogeneous layer) and the optimization process is accomplished with rigor using the idea of scaled energy transport. The problem is addressed in four steps: 1) determine the parameters needed for optimization from the two temperature VAT equations, 2) use statistical design of experiments (simulating the problem) for the many optimization parameters, 3) perform numerical simulation of the cases that are suggested through the statistical analysis of the optimization parameters, and 4) statistically analyze the numerical results to obtain an optimization response surface. The two applications are enhancement of heat transfer dissipation from a heterogeneous media while minimizing the frictional resistance and minimization of the thermal resistance (a problem of importance to all designers of heat exchangers).


Sign in / Sign up

Export Citation Format

Share Document