statistical design of experiments
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 58)

H-INDEX

25
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Florian Brüning ◽  
Volker Schöppner

For plastic processing extruders with grooved feed sections, the design of the feed section by means of analytical calculation models can be useful to reduce experimental costs. However, these models include assumptions and simplifications that can significantly decrease the prediction accuracy of the throughput due to complex flow behavior. In this paper, the accuracy of analytical modeling for calculating the throughput in a grooved barrel extruder is verified based on a statistical design of experiments. A special focus is placed on the assumptions made in the analytics of a backpressure-independent throughput, the assumption of a block flow and the differentiation of the solids conveying into different conveying cases. Simulative throughput tests with numerical simulation software using the discrete element method, as well as experimental throughput tests, serve as a benchmark. Overall, the analytical modeling already shows a very good calculation accuracy. Nevertheless, there are some outliers that lead to larger deviations in the throughput. The model predominantly overestimates the throughputs, whereby the origin of these deviations is often in the conveying angle calculation. Therefore, a regression-based correction factor for calculating the conveying angle is developed and implemented.


2021 ◽  
Author(s):  
Goutam Mohan Pawaskar ◽  
Ritu Raval ◽  
Subbalaxmi S

Abstract Chitin is a natural polymer with N-acetylglucosamine units, extracted from seafood waste as a major source. It remains an underexplored polymer due to its crystalline structure. The commercial applicability can be improved if we could make it soluble. One of the routes employed to decrease this crystallinity is the conversion of chitin to chitosan via deacetylation. The industrial production of chitosan uses chemical methods, which leaves the process footprint on the environment. The greener alternative approach to producing chitosan is using chitin deacetylases (CDA). The enzymatically converted chitosan with known characteristics has a wide range of applications, importantly in the biomedical field. In the present paper, we report heterologous expression of CDA from a marine moneran; Bacillus aryabhattai B8W22. The process and the nutritional conditions were optimized for the submerged fermentation condition of E. coli Rosetta pLysS expressing the recombinant CDA using the design of experiment tools. The employment of central composite design (CCD) resulted in a ~2.39 fold increase in the total activity of expressed CDA with the process conditions of induction temperature at 22 ºC, agitation at 120 rpm, and 30 h of fermentation. The nutritional conditions required for the optimized expression were 0.061% glucose concentration and 1% lactose in media. The employment of these optimal growth conditions could result in cost-effective large-scale production of the lesser-explored moneran deacetylase, embarking on the greener route to produce biomedical grade chitosan.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3540
Author(s):  
Ryota Yasui ◽  
Keisuke Sekine ◽  
Hideki Taniguchi

For practical use of pluripotent stem cells (PSCs) for disease modelling, drug screening, and regenerative medicine, the cell differentiation process needs to be properly refined to generate end products with consistent and high quality. To construct and optimize a robust cell-induction process, a myriad of cell culture conditions should be considered. In contrast to inefficient brute-force screening, statistical design of experiments (DOE) approaches, such as factorial design, orthogonal array design, response surface methodology (RSM), definitive screening design (DSD), and mixture design, enable efficient and strategic screening of conditions in smaller experimental runs through multifactorial screening and/or quantitative modeling. Although DOE has become routinely utilized in the bioengineering and pharmaceutical fields, the imminent need of more detailed cell-lineage specification, complex organoid construction, and a stable supply of qualified cell-derived material requires expedition of DOE utilization in stem cell bioprocessing. This review summarizes DOE-based cell culture optimizations of PSCs, mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and Chinese hamster ovary (CHO) cells, which guide effective research and development of PSC-derived materials for academic and industrial applications.


Author(s):  
Laura Walls ◽  
José Martinez ◽  
E. Antonio del Rio Chanona ◽  
Leonardo Rios Solis

Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck. In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories. The optimal factor combination was determined via data driven statistical modelling and validated in 1L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of a nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg/L, representing a three-fold improvement compared to the highest literature titers in S. cerevisiae. Comparable titers were obtained when the process was scaled up a further five-fold using 5 L bioreactors. The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development.


2021 ◽  
Author(s):  
Yi-Ping Lin ◽  
Mehrab Mehrvar

Titanium dioxide (TiO2) photocatalysis is one of the most commonly studied advanced oxidation processes (AOPs) for the mineralization of deleterious and recalcitrant compounds present in wastewater as it is stable, inexpensive, and effective. Out of all, doping with metal and non-metals, and the heterojunction with another semiconductor were proven to be efficient methods in enhancing the degradation of organic pollutants under ultraviolet (UV) and visible light. However, complex degradation processes in the treatment of an actual wastewater are difficult to model and optimize. In the present study, the application of a modified photocatalyst, Ag/TiO2/Fe2O3, for the degradation of an actual confectionery wastewater was investigated. Factorial studies and statistical design of experiments using the Box-Behnken method along with response surface methodology (RSM) were employed to identify the individual and cross-factor effects of independent parameters, including light wavelength (nm), photocatalyst concentration (g/L), initial pH, and initial total organic carbon (TOC) concentration (g/L). The maximum TOC removal at optimum conditions of light wavelength (254 nm), pH (4.68), photocatalyst dosage (480 mg/L), and initial TOC concentration (11,126.5 mg/L) was determined through the numerical optimization method (9.78%) and validated with experimental data (9.42%). Finally, the first-order rate constant with respect to TOC was found to be 0.0005 min−1 with a residual value of 0.998.


2021 ◽  
Author(s):  
Yi-Ping Lin ◽  
Mehrab Mehrvar

Titanium dioxide (TiO2) photocatalysis is one of the most commonly studied advanced oxidation processes (AOPs) for the mineralization of deleterious and recalcitrant compounds present in wastewater as it is stable, inexpensive, and effective. Out of all, doping with metal and non-metals, and the heterojunction with another semiconductor were proven to be efficient methods in enhancing the degradation of organic pollutants under ultraviolet (UV) and visible light. However, complex degradation processes in the treatment of an actual wastewater are difficult to model and optimize. In the present study, the application of a modified photocatalyst, Ag/TiO2/Fe2O3, for the degradation of an actual confectionery wastewater was investigated. Factorial studies and statistical design of experiments using the Box-Behnken method along with response surface methodology (RSM) were employed to identify the individual and cross-factor effects of independent parameters, including light wavelength (nm), photocatalyst concentration (g/L), initial pH, and initial total organic carbon (TOC) concentration (g/L). The maximum TOC removal at optimum conditions of light wavelength (254 nm), pH (4.68), photocatalyst dosage (480 mg/L), and initial TOC concentration (11,126.5 mg/L) was determined through the numerical optimization method (9.78%) and validated with experimental data (9.42%). Finally, the first-order rate constant with respect to TOC was found to be 0.0005 min−1 with a residual value of 0.998.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mayuresh M. Abhyankar ◽  
Mark T. Orr ◽  
Robert Kinsey ◽  
Sandra Sivananthan ◽  
Andrew J. Nafziger ◽  
...  

Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.


Lubricants ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 67
Author(s):  
Sven Wirsching ◽  
Max Marian ◽  
Marcel Bartz ◽  
Thomas Stahl ◽  
Sandro Wartzack

In the context of targeted improvements in energy efficiency, secondary rolling bearing contacts are gaining relevance. As such, the elastohydrodynamically lubricated (EHL) roller face/rib contact of tapered roller bearings significantly affects power losses. Consequently, this contribution aimed at numerical optimization of the pairing’s macro-geometric parameters. The latter were sampled by a statistical design of experiments (DoE) and the tribological behavior was predicted by means of EHL contact simulations. For each of the geometric pairings considered, a database was generated. Key target variables such as pressure, lubricant gap and friction were approximated by a meta-model of optimal prognosis (MOP) and optimization was carried out using an evolutionary algorithm (EA). It was shown that the tribological behavior was mainly determined by the basic geometric pairing and the radii while eccentricity was of subordinate role. Furthermore, there was a trade-off between high load carrying capacity and low frictional losses. Thereby, spherical or toroidal geometries on the roller end face featuring a large radius paired with a tapered rib geometry were found to be advantageous in terms of low friction. For larger lubricant film heights and load carrying capacity, spherical or toroidal roller on toroidal rib geometries with medium radii were favorable.


2021 ◽  
Vol 11 (12) ◽  
pp. 5568
Author(s):  
Bàrbara Micó-Vicent ◽  
Esther Perales Romero ◽  
Jorge Jordán-Núñez ◽  
Valentín Viqueira

Sustainable and green materials have been studied in dye and pigment productions to reduce their environment impacts from being produced and applied. Although natural dyes are an excellent choice to move from agrowaste, some improvements must be made before they are applied given their poor fastness. One way of improving natural dye properties is their adsorption into nanoclay structures to give hybrid pigments. This work used tubular halloysite and laminar laponite to adsorb and stabilize natural copper chlorophyll. With a statistical design of experiments, we observed interactions between synthesis factors, such as pH, ionic strength, and surfactant or silane modification. Cool hybrid pigments with high TSR (%) values and a wide color range were obtained by using dispersions with only distilled water at room temperature. Successful chlorophyll adsorption on both nanoclay surfaces took place by XRD and DTA analyses. The maximum natural dye absorption for both nanoclay types took place under acid conditions, pH 3–4, and in the presence of mordant. The TSR (%) improved by the silane pH interaction, and halloysite hybrid pigments obtained higher TSR values than the laponite ones. Finally, a wide chromatic green color range was obtained with the surfactant modification in both nanoclays, and the color fastening was also improved in the hybrid pigments application. The samples generated with 10% of hybrid pigments from both nanoclays and an Epoxy bioresin, show higher colorfastness than the sample with the natural chlorophyll, due to the nanoclays–dye interaction and protection.


Sign in / Sign up

Export Citation Format

Share Document