Compact Modeling of Fluid Flow and Heat Transfer in Straight Fin Heat Sinks

2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.

2004 ◽  
Vol 126 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim ◽  
Alfonso Ortega

In this work, a novel compact modeling method based on the volume-averaging technique is presented. Its application to the analysis of fluid flow and heat transfer in pin fin heat sinks are further analyzed. The pin fin heat sink is modeled as a porous medium. The volume-averaged momentum and energy equations for fluid flow and heat transfer in pin fin heat sinks are obtained by using the local volume-averaging method. The permeability, the Ergun constant, and the interstitial heat transfer coefficient required to solve these equations are determined experimentally and correlations for them are presented. To validate the compact model proposed in this paper, 20 aluminum pin fin heat sinks having a 101.43 mm×101.43 mm base size are tested with an inlet velocity ranging from 1 m/s to 5 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. Pressure drop and heat transfer characteristics of pin fin heat sinks obtained from the porous medium approach are compared with experimental results. Upon comparison, the porous medium approach is shown to predict accurately the pressure drop and heat transfer characteristics of pin fin heat sinks. Finally, for minimal thermal resistance, the optimum surface porosities of the pin fin heat sink are obtained under constraints on pumping power and heat sink size. The optimized pin fin heat sinks are shown to be superior to the optimized straight fin heat sinks in thermal performance by about 50% under the same constraints on pumping power and heat sink size.


Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a novel compact modeling method based on the volume-averaging technique and its application to the analysis of fluid flow and heat transfer in pin fin heat sinks are presented. The pin fin heat sink is modeled as a porous medium. The volume-averaged momentum and energy equations for fluid flow and heat transfer in pin fin heat sinks are obtained using the local volume-averaging method. The permeability, the Ergun constant and the interstitial heat transfer coefficient required to solve these equations are determined experimentally. To validate the compact model proposed in this paper, 20 aluminum pin fin heat sinks having a 101.43 mm × 101.43 mm base size are tested with an inlet velocity ranging from 1 m/s to 5 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. Pressure drop and heat transfer characteristics of pin fin heat sinks obtained from the porous medium approach are compared with experimental results. Upon comparison, the porous medium approach is shown to predict accurately the pressure drop and heat transfer characteristics of pin fin heat sinks. Finally, surface porosities of the pin fin heat sink for which the thermal resistance of the heat sink is minimal are obtained under constraints on pumping power and heat sink size. The optimized pin fin heat sinks are shown to be superior to the optimized straight fin heat sinks in thermal performance by about 50% under the same constraints on pumping power and heat sink size.


Author(s):  
Steven Miner

This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular, the effect of bosses, used for mounting components, on the fluid flow distribution and temperature distribution in the heat sink are evaluated. A typical heat sink has fins sandwiched between top and bottom plates, with electronic components mounted on the plates. The top and bottom plates spread the heat generated in the components to reduce the local heat flux. The fins substantially increase the heat transfer area, reducing the temperature rise from the coolant to the top and bottom plates. In this case a uniform distribution of flow across the heat sink can be achieved and there will be no localized hot spots. Ideally there are no protrusions into the finned portion of the heat sink which would cause disruptions in the uniform flow through the heat sink. However, a boss may be needed to bolt a component to the heat sink. The presence of the boss has three effects on the heat sink performance. The boss disrupts the flow in its immediate vicinity, increasing the thermal resistance. This will cause an increase in operating temperature at that location. In addition, the boss will change the flow distribution in the heat sink. Locations upstream and downstream of the boss may see reduced flow due to the obstruction, which in turn will cause an increase in operating temperature for these areas of the heat sink. Finally, the change in flow distribution may increase the pressure drop through the entire heat sink, increasing the power required to operate the system. The purpose of this study is to numerically evaluate the clearance requirements around circular bosses. Comparisons between an unobstructed heat sink and a heat sink with an obstruction are made for the maximum component temperature rise, the pressure drop and the flow distribution. Clearance ratios, diameter of the fin cut out to boss diameter, were varied from 1.1 to 3.3. The Reynolds number for the flow was varied from roughly 3000 to 70,000 based on the hydraulic diameter of flow passage.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jienan Shen ◽  
Xiuxiu Li ◽  
Yongsheng Zhu ◽  
Boya Zhang ◽  
Hang Guo ◽  
...  

Abstract Numerical studies have been performed to analyze the fluid flow and heat transfer characteristics of nine microchannel heat sinks (MCHS) with different shapes and different arrangements of the ribs and cavities on the sidewalls, using three common shapes (square, triangle, and circular) of ribs or cavities as the basic structure in this work. The boundary conditions, governing equations, friction factor (f), Nusselt number (Nu), and performance evaluation criteria (ξ) were considered to determine which design was the best in terms of the heat transfer, the pressure drop, and the overall performance. It was observed that no matter how the circular ribs or cavities were arranged, its heat sink performance was better than the other two shapes for Reynolds number of 200–1000. Therefore, circular ribs or cavities can be considered as the best structure to improve the performance of MCHS. In addition, the heat sink performance of the microchannel heat sink with symmetrical circular ribs (MCHS-SCR) was improved by 31.2 % compared with the conventional microchannel heat sink at Re = 667. This was because in addition to the formation of transverse vortices in the channel, four symmetrical and reverse longitudinal vortices are formed to improve the mixing efficiency of the central fluid (low temperature) and the near-wall fluid (high temperature). Then, as the Reynolds number increases, the heat sink performance of MCHS-SCR dropped sharply. The heat sink performance of microchannel heat sinks with staggered ribs and cavities (MCHS-SCRC, MCHS-STRC, and MCHS-SSRC) exceeded that of MCHS-SCR. This indicated that the microchannel heat sink with staggered ribs and cavities was more suitable for high Reynolds number (Re > 800).


Author(s):  
Chan Byon ◽  
Sung Jin Kim

In this paper, a compact modeling method for predicting the thermal characteristics of vertical plate fin heat sinks under natural convection is presented. The plate fin heat sink is modeled using the volume-averaging approach. The solutions for velocity and temperature distributions are obtained by solving the averaged governing equations. In order to validate the model proposed in this paper, experimental investigations are performed. The resulting effective heat transfer coefficients of heat sinks are compared with those obtained through the compact modeling. Under comparison, the analytical solutions based on the compact modeling are shown to predict the heat transfer characteristics of plate fin heat sink quite well. Comparisons with other studies are also conducted. Using the validated model, the thermal resistances of heat sinks are obtained. The heat transfer characteristics of the heat sink under natural convection are compared with those of the heat sink subjected to forced convection. And finally, thermal optimization of heat sink is performed.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2003 ◽  
Vol 125 (3) ◽  
pp. 319-324 ◽  
Author(s):  
C. B. Coetzer ◽  
J. A. Visser

This paper introduces a compact model to predict the interfin velocity and the resulting pressure drop across a longitudinal fin heat sink with tip bypass. The compact model is based on results obtained from a comprehensive study into the behavior of both laminar and turbulent flow in longitudinal fin heat sinks with tip bypass using CFD analysis. The new compact flow prediction model is critically compared to existing compact models as well as to the results obtained from the CFD simulations. The results indicate that the new compact model shows at least a 4.5% improvement in accuracy predicting the pressure drop over a wide range of heat sink geometries and Reynolds numbers simulated. The improved accuracy in velocity distribution between the fins also increases the accuracy of the calculated heat transfer coefficients applied to the heat sinks.


Sign in / Sign up

Export Citation Format

Share Document