aerosol filtration
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6766
Author(s):  
Mattia Pierpaoli ◽  
Chiara Giosuè ◽  
Natalia Czerwińska ◽  
Michał Rycewicz ◽  
Aleksandra Wieloszyńska ◽  
...  

The enormous world demand for personal protective equipment to face the current SARS-CoV-2 epidemic has revealed two main weaknesses. On one hand, centralized production led to an initial shortage of respirators; on the other hand, the world demand for single-use equipment has had a direct and inevitable effect on the environment. Polylactide (PLA) is a biodegradable, biocompatible, and renewable thermoplastic polyester, mainly derived from corn starch. Electrospinning is an established and reproducible method to obtain nano- and microfibrous materials with a simple apparatus, characterized by high air filtration efficiencies. In the present work, we designed and optimized an open-source electrospinning setup, easily realizable with a 3D printer and using components widely available, for the delocalized production of an efficient and sustainable particulate matter filter. Filters were realized on 3D-printed PLA support, on which PLA fibers were subsequently electrospun. NaCl aerosol filtration tests exhibited an efficiency greater than 95% for aerosol having an equivalent diameter greater than 0.3 μm and a fiber diameter comparable to the commercially available FFP2 melt-blown face mask. The particulate entrapped by the filters when operating in real environments (indoors, outdoors, and working scenario) was also investigated, as well as the amount of heavy metals potentially released into the environment after filtration activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anand Kumar ◽  
Samantha B. Kasloff ◽  
Todd Cutts ◽  
Anders Leung ◽  
Naresh Sharma ◽  
...  

AbstractShortages of personal protective equipment for use during the SARS-CoV-2 pandemic continue to be an issue among health-care workers globally. Extended and repeated use of N95 filtering facepiece respirators without adequate decontamination is of particular concern. Although several methods to decontaminate and re-use these masks have been proposed, logistic or practical issues limit adoption of these techniques. In this study, we propose and validate the use of the application of moist heat (70 °C with humidity augmented by an open pan of water) applied by commonly available hospital (blanket) warming cabinets to decontaminate N95 masks. This report shows that a variety of N95 masks can be repeatedly decontaminated of SARS-CoV-2 over 6 h moist heat exposure without compromise of their filtering function as assessed by standard fit and sodium chloride aerosol filtration efficiency testing. This approached can easily adapted to provide point-of-care N95 mask decontamination allowing for increased practical utility of mask recycling in the health care setting.


2021 ◽  
Author(s):  
Jung Hoon Lee ◽  
Max Rounds ◽  
Forbes McGain ◽  
Robyn Schofield ◽  
Grant Skidmore ◽  
...  

AbstractObjectiveTo assess the effectiveness of aerosol filtration by portable air cleaning devices with high efficiency particulate air (HEPA) filters used in addition to standard building heating ventilation and air-conditioning (HVAC).MethodsTest rooms, including a hospital single-patient room, were filled with test aerosol to simulate aerosol movement. Aerosol counts were measured over time with various portable air cleaning devices and room ventilation systems to quantify the aerosol concentration reduction rate and overall clearance rate.ResultsPortable air cleaners were very effective in removing aerosols, especially for the devices with high flow rate. In a small control room, the aerosols were cleared 4 to 5 times faster with portable air cleaners than the room with HVAC alone. A single bed hospital room equipped with an excellent ventilation rate (∼ 14 air changes per hour) can clear the aerosols in 20 minutes. However, with the addition of two air cleaners, the clearance time became 3 times faster (in 6 minutes and 30 seconds).ConclusionsPortable air cleaning devices with HEPA filtration were highly effective at removing aerosols. To clear aerosols (above 90% clearance) in under 10 minutes requires around 25 air changes per hour; readily feasible with air cleaners. Inexpensive portable air cleaning devices should be considered for small and enclosed spaces in health care settings such as inpatient rooms, personal protective equipment donning/doffing stations, and staff tea rooms. Portable air cleaners are particularly important where there is limited ability to reduce aerosol transmission with building HVAC ventilation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 900
Author(s):  
Maria Pardo-Figuerez ◽  
Alberto Chiva-Flor ◽  
Kelly Figueroa-Lopez ◽  
Cristina Prieto ◽  
Jose M. Lagaron

Electrospinning has been used to develop and upscale polyacrylonitrile (PAN) nanofibers as effective aerosol filtration materials for their potential use in respirators. The fibers were deposited onto non-woven spunbond polypropylene (SPP) and the basis weight (grammage, g/m2) was varied to assess the resulting effect on filtration efficiency and breathing resistance of the materials. The results indicated that a basis weight in excess of 0.4 g/m2 of PAN electrospun fibers yielded a filtration efficiency over 97%, with breathing resistance values that increased proportionally with the amount of basis weight added. With the aim of retaining filter efficiency whilst lowering breathing resistance, the basis weight of 0.4 g/m2 and 0.8 g/m2 of PAN electrospun fibers were strategically split up and stacked with SPP in different configurations. The results suggested that a symmetric structure based on SPP/PAN/PAN/SPP was the optimal structure, as it reduces SPP consumption while maintaining an FFP2-type of filtration efficiency, while reducing breathing resistance, specially at high air flow rates, such as those mimicking FFP2 exhalation conditions. The incorporation of zinc oxide (ZnO) nanoparticles within the electrospun nanofibers in the form of nanocomposites, retained the high filtration characteristics of the unfilled filter, while exhibiting a strong bactericidal capacity, even after short contact times. This study demonstrates the potential of using the symmetric splitting of the PAN nanofibers layer as a somewhat more efficient configuration in the design of filters for respirators.


2021 ◽  
Author(s):  
Anand Kumar ◽  
Samantha B. Kasloff ◽  
Todd Cutts ◽  
Anders Leung ◽  
Naresh Sharma ◽  
...  

Abstract Shortages of personal protective equipment for use during the SARS-CoV-2 pandemic continue to be an issue among health-care workers globally. Extended and repeated use of N95 filtering facepiece respirators without adequate decontamination is of particular concern. Although several methods to decontaminate and re-use these masks have been proposed, logistic or practical issues limit adoption of these techniques. In this study, we propose and validate the use of the application of moist heat (70oC with humidity augmented by an open pan of water) applied by commonly available hospital (blanket) warming cabinets to decontaminate N95 masks. This report shows that a variety of N95 masks can be repeatedly decontaminated of SARS-CoV-2 over 6 hours moist heat exposure without compromise of their filtering function as assessed by standard fit and sodium chloride aerosol filtration efficiency testing. This approached can easily adapted to provide point-of-care N95 mask decontamination allowing for increased practical utility of mask recycling in the health care setting.


2021 ◽  
Author(s):  
Leigh R. Crilley ◽  
Andrea Angelucci ◽  
Brian Malile ◽  
Cora J. Young ◽  
Trevor C. VandenBoer ◽  
...  

<div>Current guidance by leading public health agencies recommends wearing a 3-layer cloth-based face mask with a middle non-woven material insert to reduce the transmission of infectious respiratory viruses like SARS-CoV-2. In this work we explore the material characteristics for a range of readily available non-woven materials and their sub-micron particle filtration efficiency (PFE), with the aim of providing evidence-based guidelines for selecting appropriate materials as inserts in cloth-based masks. We observed a wide range of ideal PFE for the tested non-woven materials, with polypropylene, Swiffer and Rayon/polyester blend providing the highest PFE and breathability. Our results suggest that materials comprising loose 3D fibrous webs (e.g. flannel, Swiffer and gauze) exhibited enhanced filtration efficiency compared to compressed counterparts. Common modifications to fabrics, such as water-resistant treatment and a sewn seam were also investigated. Overall, we demonstrate that adding an appropriate non-woven material as an insert filter can significantly improve the performance of cloth-based masks, and there exist suitable cellulose-based alternatives to polypropylene.</div>


Sign in / Sign up

Export Citation Format

Share Document