scholarly journals Effect of shape modification on the confinement effectiveness of CFRP strengthened square concrete compression members: Experimental study

2021 ◽  
Vol 15 ◽  
pp. e00679
Author(s):  
Wisam A. Aules ◽  
Saad M. Raoof
2010 ◽  
Vol 163-167 ◽  
pp. 433-438
Author(s):  
Xian Lei Cao ◽  
Ji Ping Hao ◽  
Chun Lei Fan

To obtain a better understanding of the behavior and load-carrying capacity of Q460 high-strength single-angle compression members bolted by one leg, using static loading way to 48 angles carried out experimental study. The experiments show test specimens produce biaxial bending, most small slenderness ratio members are controlled by local buckling, and slender specimens are controlled by overall buckling. In addition to these factors in model experiment, influences of residual stresses on ultimate load-carrying capacity were analyzed by finite element numerical simulation analysis, the results show the residual stresses affect the ultimate load-carrying capacity of angles by about 5% or less. Comparison of the load-carrying capacity of experimental and theoretical results indicate the difference of experimental and finite element values ranges from -9.99% to +9.76%, American Design of Latticed Steel Transmission Structure (ASCE10-1997) and Chinese Code for Design of Steel Structures (GB50017-2003) underestimate separately the experimental load-carrying capacity by about 2.34%~33.93% and 1.18%~63.3%, and the agreement is somewhat good between experimental program and the finite element analysis. Based on model experiment and simulated experiment, the formula of stability coefficient of single-angle compression members was established. It provides basic data for spreading Q460 high-strength single-angles members attached by one leg.


1989 ◽  
Vol 16 (3) ◽  
pp. 249-257 ◽  
Author(s):  
André Picard ◽  
Denis Beaulieu

In structural systems using cross braces, the compression members are restrained against out-of-plane buckling by the tension members. It was shown in a theoretical study that the transverse stiffness provided by a tension member depends on the tension force in the member and on the flexural stiffness against out-of-plane deformation of the tension member. Equations were derived to determine the effective length factor of the compression member, taking into account the transverse stiffness of the tension member.This paper presents the results of a small-scale experimental study, which shows that the proposed equations slightly underestimate the transverse stiffness and overestimate the effective length factor. These equations are therefore conservative, but they indicate that an effective length factor much smaller than 1.0 can be used. Key words: stability, elastic buckling, elastic supports, cross braces.


Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


1962 ◽  
Vol 5 (4) ◽  
pp. 387-394 ◽  
Author(s):  
Bruce Quarrington ◽  
Jerome Conway ◽  
Nathan Siegel
Keyword(s):  

1974 ◽  
Vol 126 (2) ◽  
pp. 243-248
Author(s):  
A WAKABAYASHI ◽  
T KUBO ◽  
K CHARNEY ◽  
Y NAKAMURA ◽  
J CONNOLLY

Sign in / Sign up

Export Citation Format

Share Document