scholarly journals Analysis of corroded elbow section of carbon steel piping system of an oil–gas separator vessel

2013 ◽  
Vol 1 (1) ◽  
pp. 6-14 ◽  
Author(s):  
H.M. Tawancy ◽  
Luai M. Al-Hadhrami ◽  
F.K. Al-Yousef
Author(s):  
Jin Weon Kim ◽  
Yeon Soo Na ◽  
Chi Yong Park

Local wall-thinning due to flow-accelerated corrosion is one of the degradation mechanisms of carbon steel piping in nuclear power plant (NPP). It is a main concern in carbon steel piping systems in terms of the safety and operability of the NPP. Recently, the integrity of piping components containing local wall-thinning has become more important for maintaining the reliability of a nuclear piping system, and has been the subject of several studies. However, although wall-thinning in pipe bends and elbows has been frequently reported, its effect on the integrity of pipe bends and elbows has not yet been systematically investigated. Thus, the purpose of this study was to investigate the effect of the circumferential location of a local wall-thinning defect on the collapse behavior of an elbow. For this purpose, the present study used three-dimensional finite element analyses on a 90-degree elbow containing local wall-thinning at the crown of the bend region and evaluated the collapse moment of the wall-thinned elbow under various thinning geometries and loading conditions. The combined internal pressure and bending loads were considered as an applied load. Internal pressure of 0∼20 MPa and both closing-and opening-mode bending were applied. The results of the analyses showed that a reduction in the collapse moment of the elbow due to local wall-thinning was more significant when a defect was located at the crown than when a defect was located at the intrados and extrados. Also, the effect of the internal pressure on the collapse moment depended on the circumferential location of the thinning defect and mode of the bending load.


1994 ◽  
Vol 153 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Naoki Miura ◽  
Terutaka Fujioka ◽  
Koichi Kashima ◽  
Satoshi Kanno ◽  
Makoto Hayashi ◽  
...  

Author(s):  
Alexey Arzhaev ◽  
Sergey Butorin

Operating NPPs license extension activities in Russia produced strong demand for safety improvement of plants build according to earlier standards. Installation of additional supports as pipe whip restraints is one of requirement in acting regulatory documentation which should be followed or compensated by appropriate measures like Leak Before Break (LBB) analyses and improvement of In-Service Inspection (ISI) and Leak Detecting System (LDS). Basic document for LBB concept application to Russian NPP piping is RD 95 10547-99. Its requirements correspond to classical LBB principles used in many countries in Europe, USA and Japan. In many real cases requirements of RD 95 10547-99 could not be applied to safety important NPP piping systems due to the presence of specific features of operational degradation due to some corrosion mechanisms: for example, erosion-corrosion (E-C) for carbon steel piping and intergranular stress corrosion cracking (IGSSC) for heat affected zones of austenitic piping weldments. For special case of RBMK piping with outer diameter 325 mm (potentially susceptible to IGSCC) special Break Preclusion Concept has been developed in Russia after IAEA Extrabudgetary Program in 2000–2002. Contrary to LBB Concept demanding for all four basic principles to be completely fulfilled BP Concept accepts some principles to be fulfilled in a balanced way with demonstration of monitored degradation effectively achieved in operation. Special BP Concept is being developed now to support integrity assessment of RBMK carbon steel steam and feed water piping potentially susceptible to E-C which requires another set of measures to demonstrate principle of controlled degradation in operation then in case of austenitic steel piping. General scheme of piping integrity analyses according to LBB and BP Concepts is discussed and examples of specific approaches to achieve controlled degradation are illustrated in paper. As result of LBB and BP Concepts application it is possible to substantiate reject of additional piping whip restraints implementation on-site. Examples of similar safety methodology development in other countries have been reported at IAEA Specialists Meeting on LBB in Kiev, Ukraine in November 2006.


Author(s):  
Phuong H. Hoang

Non-planar flaw such as local wall thinning flaw is a major piping degradation in nuclear power plants. Hundreds of piping components are inspected and evaluated for pipe wall loss due to flow accelerated corrosion and microbiological corrosion during a typical scheduled refueling outage. The evaluation is typically based on the original code rules for design and construction, and so often that uniformly thin pipe cross section is conservatively assumed. Code Case N-597-2 of ASME B&PV, Section XI Code provides a simplified methodology for local pipe wall thinning evaluation to meet the construction Code requirements for pressure and moment loading. However, it is desirable to develop a methodology for evaluating non-planar flaws that consistent with the Section XI flaw evaluation methodology for operating plants. From the results of recent studies and experimental data, it is reasonable to suggest that the Section XI, Appendix C net section collapse load approach can be used for non-planar flaws in carbon steel piping with an appropriate load multiplier factor. Local strain at non-planar flaws in carbon steel piping may reach a strain instability prior to net section collapse. As load increase, necking starting at onset strain instability leads to crack initiation, coalescence and fracture. Thus, by limiting local strain to material onset strain instability, a load multiplier factor can be developed for evaluating non-planar flaws in carbon steel piping using limit load methodology. In this paper, onset strain instability, which is material strain at the ultimate stress from available tensile test data, is correlated with the material minimum specified elongation for developing a load factor of non-planar flaws in various carbon steel piping subjected to multiaxial loading.


1995 ◽  
Vol 158 (2-3) ◽  
pp. 241-251 ◽  
Author(s):  
Y.J Kim ◽  
C.S Seok ◽  
Y.S Chang ◽  
J.O Kim ◽  
K.M Yang ◽  
...  

Author(s):  
Kazunobu Sakamoto ◽  
Takashi Furukawa ◽  
Ichiro Komura ◽  
Yoshinori Kamiyama ◽  
Tsuyoshi Mihara

Japan Nuclear Energy Safety Organization (JNES) has been carrying out the research program entitled “Nondestructive Inspection Technologies for the Cast Stainless Steel Piping” since 2009FY to comprehend the unique ultrasonic wave propagation in the Cast Austenitic Stainless Steel (CASS) and to confirm detection and sizing capability for cracks in the material by currently available ultrasonic testing techniques. The research is also intended to provide inspection staff with the fundamental information of ultrasonic wave propagation in CASS, for educational purpose. In this research program, specimens whose material, size, dimension and welding method are identical to the main coolant piping system in Japanese pressurized water reactors (PWRs) are examined. Results from the study on the capability for inspection of CASS and the unique wave propagation phenomena such as beam skewing are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document