J integral estimation fracture analysis for circumferentially cracked carbon steel piping

1996 ◽  
Vol 167 (1) ◽  
pp. 7-10 ◽  
Author(s):  
H. Xu ◽  
P.N. Li ◽  
Y.J. Xie ◽  
Z.W. Wang
1989 ◽  
Vol 55 (512) ◽  
pp. 819-827 ◽  
Author(s):  
Satoshi KANNO ◽  
Hideo KOBAYASHI ◽  
Kunio HASEGAWA ◽  
Tasuku SHIMIZU

1994 ◽  
Vol 153 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Naoki Miura ◽  
Terutaka Fujioka ◽  
Koichi Kashima ◽  
Satoshi Kanno ◽  
Makoto Hayashi ◽  
...  

Author(s):  
Alexey Arzhaev ◽  
Sergey Butorin

Operating NPPs license extension activities in Russia produced strong demand for safety improvement of plants build according to earlier standards. Installation of additional supports as pipe whip restraints is one of requirement in acting regulatory documentation which should be followed or compensated by appropriate measures like Leak Before Break (LBB) analyses and improvement of In-Service Inspection (ISI) and Leak Detecting System (LDS). Basic document for LBB concept application to Russian NPP piping is RD 95 10547-99. Its requirements correspond to classical LBB principles used in many countries in Europe, USA and Japan. In many real cases requirements of RD 95 10547-99 could not be applied to safety important NPP piping systems due to the presence of specific features of operational degradation due to some corrosion mechanisms: for example, erosion-corrosion (E-C) for carbon steel piping and intergranular stress corrosion cracking (IGSSC) for heat affected zones of austenitic piping weldments. For special case of RBMK piping with outer diameter 325 mm (potentially susceptible to IGSCC) special Break Preclusion Concept has been developed in Russia after IAEA Extrabudgetary Program in 2000–2002. Contrary to LBB Concept demanding for all four basic principles to be completely fulfilled BP Concept accepts some principles to be fulfilled in a balanced way with demonstration of monitored degradation effectively achieved in operation. Special BP Concept is being developed now to support integrity assessment of RBMK carbon steel steam and feed water piping potentially susceptible to E-C which requires another set of measures to demonstrate principle of controlled degradation in operation then in case of austenitic steel piping. General scheme of piping integrity analyses according to LBB and BP Concepts is discussed and examples of specific approaches to achieve controlled degradation are illustrated in paper. As result of LBB and BP Concepts application it is possible to substantiate reject of additional piping whip restraints implementation on-site. Examples of similar safety methodology development in other countries have been reported at IAEA Specialists Meeting on LBB in Kiev, Ukraine in November 2006.


1987 ◽  
Vol 36 (403) ◽  
pp. 334-340
Author(s):  
Kenji HAYASHI ◽  
Hiromasa KAWAMURA ◽  
Kohsuke HORIKAWA

Author(s):  
Phuong H. Hoang

Non-planar flaw such as local wall thinning flaw is a major piping degradation in nuclear power plants. Hundreds of piping components are inspected and evaluated for pipe wall loss due to flow accelerated corrosion and microbiological corrosion during a typical scheduled refueling outage. The evaluation is typically based on the original code rules for design and construction, and so often that uniformly thin pipe cross section is conservatively assumed. Code Case N-597-2 of ASME B&PV, Section XI Code provides a simplified methodology for local pipe wall thinning evaluation to meet the construction Code requirements for pressure and moment loading. However, it is desirable to develop a methodology for evaluating non-planar flaws that consistent with the Section XI flaw evaluation methodology for operating plants. From the results of recent studies and experimental data, it is reasonable to suggest that the Section XI, Appendix C net section collapse load approach can be used for non-planar flaws in carbon steel piping with an appropriate load multiplier factor. Local strain at non-planar flaws in carbon steel piping may reach a strain instability prior to net section collapse. As load increase, necking starting at onset strain instability leads to crack initiation, coalescence and fracture. Thus, by limiting local strain to material onset strain instability, a load multiplier factor can be developed for evaluating non-planar flaws in carbon steel piping using limit load methodology. In this paper, onset strain instability, which is material strain at the ultimate stress from available tensile test data, is correlated with the material minimum specified elongation for developing a load factor of non-planar flaws in various carbon steel piping subjected to multiaxial loading.


1995 ◽  
Vol 158 (2-3) ◽  
pp. 241-251 ◽  
Author(s):  
Y.J Kim ◽  
C.S Seok ◽  
Y.S Chang ◽  
J.O Kim ◽  
K.M Yang ◽  
...  

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Ravi Kiran ◽  
G. R. Reddy ◽  
P. N. Dubey ◽  
M. K. Agrawal

This article presents the experimental and numerical studies of fatigue-ratcheting in carbon steel piping systems under internal pressure and earthquake load. Shake table tests are carried out on two identical 6 in pressurized piping systems made of carbon steel of grade SA333 Gr 6. Tests are carried out using similar incremental seismic load till failure. Wavelet analysis is carried to evaluate frequency change during testing. The tested piping systems are analyzed using iterative response spectrum (IRS) method, which is based on fatigue-ratcheting and compared with test results. Effect of thickness variation in elbow on strain accumulation is studied. Excitation level for fatigue-ratcheting failure is also evaluated and the details are given in this paper.


Sign in / Sign up

Export Citation Format

Share Document