scholarly journals Parametric optimisation of resistance temperature detector design using validated virtual prototyping approach

Author(s):  
Georgi Todorov ◽  
Konstantin Kamberov ◽  
Tsvetozar Ivanov
2021 ◽  
Author(s):  
Laura Namisnak ◽  
Sepideh Khoshnevis ◽  
Kenneth R. Diller

Abstract Various medical procedures are accomplished by manipulating skin temperature in a nonuniform pattern. Skin temperature monitoring is essential to assess conformance to protocol specifications and to prevent thermal injury. Existing solutions for skin temperature monitoring include single point sensors, such as thermocouples, and two-dimensional methods of sensing surface temperature, such as infrared thermography, and wearable technology. Single point sensors cannot detect the average temperature and consequently their measurements cannot be representative of average surface temperature in a nonuniform temperature field. Infrared thermography requires optical access, and wearable sensors may require complex manufacturing processes and impede the heat exchange with a source by introducing a layer of insulation. Our solution is a two-dimensional resistance temperature detector (2D RTD) created by knitting copper magnet wire into custom shapes. The 2D RTDs were calibrated, compared to one-dimensional sensors and wearable sensors, and analyzed for hysteresis, repeatability, and surface area conformation. Resistance and temperature were correlated with an R2 of 0.99. The 2D RTD proved to be a superior device for measuring average skin temperature exposed to a nonuniform temperature boundary in the absence of optical access such as when a full body thermal control garment is worn.


2021 ◽  
Vol 885 ◽  
pp. 141-147
Author(s):  
Winda Noor Santi ◽  
Moh. Toifur

Preservation of materials using liquid nitrogen media has been widely used. One of them is used in the medical field, namely cryonic technology. Cryonics is a method of preservation at cold temperatures using a cryoprotectant in liquid nitrogen. To maintain the quality of the material, a sensor that can detect the temperature of liquid nitrogen is needed. Low temperature sensors with Cu and Ni based Resistance Temperature Detector with layers (RTD) have been made, but these sensors have a layer of Ni deposits that are not yet homogeneous. So quality improvement is needed by adding an external magnetic field. Based on this, the aim of this research is to synthesize a thin layer of Cu / Ni using electroplating method assisted by external magnets parallel to the ion currents


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2742
Author(s):  
Wei Li ◽  
Shusheng Xiong ◽  
Xiaojun Zhou

In remote measurement systems, the lead wire resistance of the resistance sensor will produce a large measurement error. In order to ensure the accuracy of remote measurement, a novel lead-wire-resistance compensation technique is proposed, which is suitable for a two-wire resistance temperature detector. By connecting a zener diode in parallel with the resistance temperature detector (RTD) and an interface circuit specially designed for it, the lead-wire-resistance value can be accurately measured by virtue of the constant voltage characteristic of the zener diode when reverse breakdown occurs, and compensation can thereby be made when calculating the resistance of RTD. Through simulation verification and practical circuit testing, when the sensor resistance is in 848–2120 Ω scope and the lead wire resistance is less than 50 Ω, the proposed technology can ensure the measuring error of the sensor resistance within ±1 Ω and the temperature measurement error within ±0.3 °C for RTDs performing 1000 Ω at 0 °C. Therefore, this method is able to accurately compensate the measurement error caused by the lead wire resistance in two-wire RTDsand is suitable for most applications.


Sign in / Sign up

Export Citation Format

Share Document