A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension

2012 ◽  
Vol 38 (6) ◽  
pp. 726-736 ◽  
Author(s):  
Paul Cavuoto ◽  
Michael F. Fenech
2017 ◽  
Vol 74 (8) ◽  
pp. 1198-1205 ◽  
Author(s):  
Huaihan Cai ◽  
Ineke Dhondt ◽  
Lieselot Vandemeulebroucke ◽  
Caroline Vlaeminck ◽  
Madina Rasulova ◽  
...  

Abstract When cultured in axenic medium, Caenorhabditis elegans shows the largest life-span extension compared with other dietary restriction regimens. However, the underlying molecular mechanism still remains elusive. The gene cbp-1, encoding the worm ortholog of p300/CBP (CREB-binding protein), is one of the very few key genes known to be essential for life span doubling under axenic dietary restriction (ADR). By using tissue-specific RNAi, we found that cbp-1 expression in the germline is essential for fertility, whereas this gene functions specifically in the GABAergic neurons to support the full life span–doubling effect of ADR. Surprisingly, GABA itself is not required for ADR-induced longevity, suggesting a role of neuropeptide signaling. In addition, chemotaxis assays illustrate that neuronal inactivation of CBP-1 affects the animals’ food sensing behavior. Together, our results show that the strong life-span extension in axenic medium is under strict control of GABAergic neurons and may be linked to food sensing.


2017 ◽  
Author(s):  
Patrick Smith ◽  
David Willemsen ◽  
Miriam Popkes ◽  
Franziska Metge ◽  
Edson Gandiwa ◽  
...  

ABSTRACTGut bacteria occupy the interface between the organism and the external environment, contributing to homeostasis and disease. Yet, the causal role of the gut microbiota during host aging is largely unexplored. Here, using the African turquoise killifish (Nothobranchius furzeri), a naturally short-lived vertebrate, we show that the gut microbiota plays a key role in modulating vertebrate life span. Recolonizing the gut of middle-age individuals with bacteria from young donors resulted in life span extension and delayed behavioral decline. This intervention prevented the decrease in microbial diversity associated with host aging and maintained a young-like gut bacterial community, characterized by overrepresentation of the key genera Exiguobacterium, Planococcus, Propionigenium and Psychrobacter. Our findings demonstrate that the natural microbial gut community of young individuals can causally induce long-lasting beneficial systemic effects that lead to life span extension in a vertebrate model.


Author(s):  
Umberto Lucia ◽  
Giulia Grisolia

From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. In this cycle the cell changes its entropy. In cancer the growth control is damaged. In this paper we analyze the role of the volume-area ratio in cell in relation to the heat exchange between cell and its environment in order to point out the effect on the cancer growth. The result holds to a possible control of the cancer growth based on the heat exchanged by the cancer towards its environment, and the membrane potential variation, with the consequence of controlling the ions fluxes and the related biochemical reactions. This second law approach could represent a starting point for a possible future support for the anticancer therapies, in order to improve their effectiveness for the untreatable cancers.


2009 ◽  
Vol 64A (7) ◽  
pp. 711-722 ◽  
Author(s):  
L. Sun ◽  
A. A. Sadighi Akha ◽  
R. A. Miller ◽  
J. M. Harper

Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 774 ◽  
Author(s):  
Umberto Lucia ◽  
Giulia Grisolia

From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy. In cancer, the growth control is damaged. In this paper, we analyze the role of the volume–area ratio in the cell in relation to the heat exchange between cell and its environment in order to point out its effect on cancer growth. The result holds to a possible control of the cancer growth based on the heat exchanged by the cancer toward its environment and the membrane potential variation, with the consequence of controlling the ions fluxes and the related biochemical reactions. This second law approach could represent a starting point for a possible future support for the anticancer therapies, in order to improve their effectiveness for the untreatable cancers.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Patrick Smith ◽  
David Willemsen ◽  
Miriam Popkes ◽  
Franziska Metge ◽  
Edson Gandiwa ◽  
...  

Gut bacteria occupy the interface between the organism and the external environment, contributing to homeostasis and disease. Yet, the causal role of the gut microbiota during host aging is largely unexplored. Here, using the African turquoise killifish (Nothobranchius furzeri), a naturally short-lived vertebrate, we show that the gut microbiota plays a key role in modulating vertebrate life span. Recolonizing the gut of middle-age individuals with bacteria from young donors resulted in life span extension and delayed behavioral decline. This intervention prevented the decrease in microbial diversity associated with host aging and maintained a young-like gut bacterial community, characterized by overrepresentation of the key genera Exiguobacterium, Planococcus, Propionigenium and Psychrobacter. Our findings demonstrate that the natural microbial gut community of young individuals can causally induce long-lasting beneficial systemic effects that lead to life span extension in a vertebrate model.


2016 ◽  
Vol 1363 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Gene P. Ables ◽  
Julie R. Hens ◽  
Sailendra N. Nichenametla

Sign in / Sign up

Export Citation Format

Share Document