scholarly journals Woody Plant Evolution: Exceptional Lianas Reveal Rules of Woody Growth

2020 ◽  
Vol 30 (2) ◽  
pp. R76-R78 ◽  
Author(s):  
Andrew Groover
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506a-506
Author(s):  
L.A. Klein ◽  
M.T. Windham ◽  
R.N. Trigiano

Microshoot and callus cultures of Cornus florida (flowering dogwood), which were grown on woody plant medium amended with BA, were inoculated with Microsphaera pulchra (an obligate plant parasite) by gently shaking infected leaves bearing numerous conidia over the tissue. Culture dishes were sealed with parafilm and incubated at 24 °C with 25 mol·m–2·s–1 provided by cool fluorescent bulbs for 15 h. Cultures were examined with a dissecting scope every 24 h and cultures transferred when contaminating fungi were present. Specimens were prepared light microscopy and SEM. The fungus infected individual callus cells, but did not sporulate. In contrast, powdery mildew was well-established (both primary and secondary hyphae) in 70% of the microshoot cultures after 6 days and sporulated on 20% by 7 to 8 days. The cellular relationship between host and pathogen in vitro was similar to that found in greenhouse-grown plants. This technique has possible applications in maintaining fungal culture collections and studying host–pathogen relationships under more stringently controlled conditions.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 503c-503
Author(s):  
Paul H. Henry ◽  
John E. Preece

A propagation method is being developed that allows softwood shoots to be generated from stem sections of dormant woody plant species. These shoots, forced in the greenhouse during the winter, are subsequently collected and processed as softwood stem cuttings to produce clonal plant material. Many species in the nursery industry can only be propagated using softwood cuttings, and this technique allows propagation of these species to be initiated several months earlier than what is typically possible. Current studies involve expanded screening of ornamental tree and shrub species to determine if commercial production using this technique is feasible. Results demonstrate that many species may be propagated using this method, but that some species are more prolific than others with respect to number of softwood shoots produced. Additional studies are currently in progress to determine the environmental (light regime, moisture regime) and cultural (type of media) conditions that are optimal when producing clonal plant material via this technique.


Author(s):  
Brian J. Wilsey

Conservation programs alter herbivore stocking rates and find and protect the remaining areas that have not been plowed or converted to crops. Restoration is an ‘Acid Test’ for ecology. If we fully understand how grassland systems function and assemble after disturbance, then it should be easy to restore them after they have been degraded or destroyed. Alternatively, the idea that restorations will not be equivalent to remnants has been termed the ‘Humpty Dumpty’ hypothesis—once lost, it cannot be put back together again. Community assembly may follow rules, and if these rules are uncovered, then we may be able to accurately predict final species composition after assembly. Priority effects are sometimes found depending on species arrival orders, and they can result in alternate states. Woody plant encroachment is the increase in density and biomass of woody plants, and it is strongly affecting grassland C and water cycles.


Author(s):  
Aihua Zhang ◽  
Qin Wang ◽  
Yidan He ◽  
Pengying Lai ◽  
Yifu Miu ◽  
...  

Author(s):  
Anita Roth-Nebelsick ◽  
Tatiana Miranda ◽  
Martin Ebner ◽  
Wilfried Konrad ◽  
Christopher Traiser

AbstractTrees are the fundamental element of forest ecosystems, made possible by their mechanical qualities and their highly sophisticated conductive tissues. The evolution of trees, and thereby the evolution of forests, were ecologically transformative and affected climate and biogeochemical cycles fundamentally. Trees also offer a substantial amount of ecological niches for other organisms, such as epiphytes, creating a vast amount of habitats. During land plant evolution, a variety of different tree constructions evolved and their constructional principles are a subject of ongoing research. Understanding the “natural construction” of trees benefits strongly from methods and approaches from physics and engineering. Plant water transport is a good example for the ongoing demand for interdisciplinary efforts to unravel form-function relationships on vastly differing scales. Identification of the unique mechanism of water long-distance transport requires a solid basis of interfacial physics and thermodynamics. Studying tree functions by using theoretical approaches is, however, not a one-sided affair: The complex interrelationships between traits, functionality, trade-offs and phylogeny inspire engineers, physicists and architects until today.


Sign in / Sign up

Export Citation Format

Share Document