scholarly journals LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes

2021 ◽  
Author(s):  
Jose L. Nieto-Torres ◽  
Sean-Luc Shanahan ◽  
Romain Chassefeyre ◽  
Tai Chaiamarit ◽  
Sviatlana Zaretski ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoqian Hao ◽  
Xie Zhang ◽  
Zheng Li ◽  
Jianlong Kou ◽  
Fengmin Wu

Transport direction of water droplets on a functionalized surface is of great significance due to its wide applications in microfluidics technology. The prevailing view is that a water droplet on...


2019 ◽  
Vol 116 (12) ◽  
pp. 5550-5557 ◽  
Author(s):  
Lucien E. Weiss ◽  
Ljiljana Milenkovic ◽  
Joshua Yoon ◽  
Tim Stearns ◽  
W. E. Moerner

The Hedgehog-signaling pathway is an important target in cancer research and regenerative medicine; yet, on the cellular level, many steps are still poorly understood. Extensive studies of the bulk behavior of the key proteins in the pathway established that during signal transduction they dynamically localize in primary cilia, antenna-like solitary organelles present on most cells. The secreted Hedgehog ligand Sonic Hedgehog (SHH) binds to its receptor Patched1 (PTCH1) in primary cilia, causing its inactivation and delocalization from cilia. At the same time, the transmembrane protein Smoothened (SMO) is released of its inhibition by PTCH1 and accumulates in cilia. We used advanced, single molecule-based microscopy to investigate these processes in live cells. As previously observed for SMO, PTCH1 molecules in cilia predominantly move by diffusion and less frequently by directional transport, and spend a fraction of time confined. After treatment with SHH we observed two major changes in the motional dynamics of PTCH1 in cilia. First, PTCH1 molecules spend more time as confined, and less time freely diffusing. This result could be mimicked by a depletion of cholesterol from cells. Second, after treatment with SHH, but not after cholesterol depletion, the molecules that remain in the diffusive state showed a significant increase in the diffusion coefficient. Therefore, PTCH1 inactivation by SHH changes the diffusive motion of PTCH1, possibly by modifying the membrane microenvironment in which PTCH1 resides.


2019 ◽  
Vol 246 ◽  
pp. 76-79 ◽  
Author(s):  
Gang Huang ◽  
Yingchun Liang ◽  
Junhua Wang ◽  
Xianhua Zeng ◽  
Zhengrong Li ◽  
...  

2019 ◽  
Vol 375 (1792) ◽  
pp. 20190154 ◽  
Author(s):  
Gregor Eichele ◽  
Eberhard Bodenschatz ◽  
Zuzana Ditte ◽  
Ann-Kathrin Günther ◽  
Shoba Kapoor ◽  
...  

The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.


Nanoscale ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 4077-4084 ◽  
Author(s):  
Junrui Wu ◽  
Kai Yin ◽  
Ming Li ◽  
Zhipeng Wu ◽  
Si Xiao ◽  
...  

We report a simple, flexible and substrate-independent method for pumpless under-oil directional transport of water.


2019 ◽  
Vol 70 (1) ◽  
pp. 377-406 ◽  
Author(s):  
Momoko Ikeuchi ◽  
David S. Favero ◽  
Yuki Sakamoto ◽  
Akira Iwase ◽  
Duncan Coleman ◽  
...  

Plants reprogram somatic cells following injury and regenerate new tissues and organs. Upon perception of inductive cues, somatic cells often dedifferentiate, proliferate, and acquire new fates to repair damaged tissues or develop new organs from wound sites. Wound stress activates transcriptional cascades to promote cell fate reprogramming and initiate new developmental programs. Wounding also modulates endogenous hormonal responses by triggering their biosynthesis and/or directional transport. Auxin and cytokinin play pivotal roles in determining cell fates in regenerating tissues and organs. Exogenous application of these plant hormones enhances regenerative responses in vitro by facilitating the activation of specific developmental programs. Many reprogramming regulators are epigenetically silenced during normal development but are activated by wound stress and/or hormonal cues.


Cell Reports ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 507-517.e3 ◽  
Author(s):  
Kerriann K. Badal ◽  
Komol Akhmedov ◽  
Phillip Lamoureux ◽  
Xin-An Liu ◽  
Adrian Reich ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ha-Reem Kim ◽  
Min-Soo Hwang ◽  
Daria Smirnova ◽  
Kwang-Yong Jeong ◽  
Yuri Kivshar ◽  
...  

AbstractTopological photonics provides a fundamental framework for robust manipulation of light, including directional transport and localization with built-in immunity to disorder. Combined with an optical gain, active topological cavities hold special promise for a design of light-emitting devices. Most studies to date have focused on lasing at topological edges of finite systems or domain walls. Recently discovered higher-order topological phases enable strong high-quality confinement of light at the corners. Here, we demonstrate lasing action of corner states in nanophotonic topological structures. We identify several multipole corner modes with distinct emission profiles via hyperspectral imaging and discern signatures of non-Hermitian radiative coupling of leaky topological states. In addition, depending on the pump position in a large-size cavity, we generate selectively lasing from either edge or corner states within the topological bandgap. Our studies provide the direct observation of multipolar lasing and engineered collective resonances in active topological nanostructures.


2008 ◽  
Vol 1096 ◽  
Author(s):  
Ersin Altintas ◽  
Edin Sarajlic ◽  
Karl F. Bohringer ◽  
Hiroyuki Fujita

AbstractNanosystems operating in liquid media may suffer from random thermal fluctuations. Some natural nanosystems, e.g. biomolecular motors, which survive in an environment where the energy required for bio-processes is comparable to thermal energy, exploit these random fluctuations to generate a controllable unidirectional movement. Inspired by the nature, a transportation system of nanobeads achieved by exploiting Brownian motion were proposed and realized. This decreases energy consumption and saves the energy compared to ordinal pure electric or magnetic drive. In this paper we present a linear Brownian motor with a 3-phase electrostatic rectification aimed for unidirectional transport of nanobeads in microfluidic channels. The transport of the beads is performed in 1 μm deep, 2 μm wide PDMS microchannels, which constrain three-dimensional random motion of nanobeads into 1D fluctuation, so-called tamed Brownian motion. We have experimentally traced the rectified motion of nanobeads and observed the shift in the beam distribution as a function of applied voltage. The detailed computational analysis on the importance of switching sequence on the speed performance of motor is performed and compared with the experimental results showing a good agreement.


Sign in / Sign up

Export Citation Format

Share Document