scholarly journals A new property of the Lovász number and duality relations between graph parameters

2017 ◽  
Vol 216 ◽  
pp. 489-501 ◽  
Author(s):  
Antonio Acín ◽  
Runyao Duan ◽  
David E. Roberson ◽  
Ana Belén Sainz ◽  
Andreas Winter

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.



Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.



Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1036
Author(s):  
Abel Cabrera Martínez ◽  
Alejandro Estrada-Moreno ◽  
Juan Alberto Rodríguez-Velázquez

This paper is devoted to the study of the quasi-total strong differential of a graph, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. Given a vertex x∈V(G) of a graph G, the neighbourhood of x is denoted by N(x). The neighbourhood of a set X⊆V(G) is defined to be N(X)=⋃x∈XN(x), while the external neighbourhood of X is defined to be Ne(X)=N(X)∖X. Now, for every set X⊆V(G) and every vertex x∈X, the external private neighbourhood of x with respect to X is defined as the set Pe(x,X)={y∈V(G)∖X:N(y)∩X={x}}. Let Xw={x∈X:Pe(x,X)≠⌀}. The strong differential of X is defined to be ∂s(X)=|Ne(X)|−|Xw|, while the quasi-total strong differential of G is defined to be ∂s*(G)=max{∂s(X):X⊆V(G)andXw⊆N(X)}. We show that the quasi-total strong differential is closely related to several graph parameters, including the domination number, the total domination number, the 2-domination number, the vertex cover number, the semitotal domination number, the strong differential, and the quasi-total Italian domination number. As a consequence of the study, we show that the problem of finding the quasi-total strong differential of a graph is NP-hard.



Cybernetics ◽  
1987 ◽  
Vol 23 (1) ◽  
pp. 128-135
Author(s):  
A. I. Yastremskii


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Robert Šámal

International audience We introduce a new graph parameter that measures fractional covering of a graph by cuts. Besides being interesting in its own right, it is useful for study of homomorphisms and tension-continuous mappings. We study the relations with chromatic number, bipartite density, and other graph parameters. We find the value of our parameter for a family of graphs based on hypercubes. These graphs play for our parameter the role that cliques play for the chromatic number and Kneser graphs for the fractional chromatic number. The fact that the defined parameter attains on these graphs the correct value suggests that our definition is a natural one. In the proof we use the eigenvalue bound for maximum cut and a recent result of Engström, Färnqvist, Jonsson, and Thapper [An approximability-related parameter on graphs – properties and applications, DMTCS vol. 17:1, 2015, 33–66]. We also provide a polynomial time approximation algorithm based on semidefinite programming and in particular on vector chromatic number (defined by Karger, Motwani and Sudan [Approximate graph coloring by semidefinite programming, J. ACM 45 (1998), no. 2, 246–265]).



Author(s):  
S. Chandra ◽  
B. D. Craven ◽  
B. Mond

AbstractA ratio game approach to the generalized fractional programming problem is presented and duality relations established. This approach suggests certain solution procedures for solving fractional programs involving several ratios in the objective function.





Author(s):  
Valentin E. Brimkov ◽  
Bruno Codenotti ◽  
Valentino Crespi ◽  
Mauro Leoncini


Sign in / Sign up

Export Citation Format

Share Document