scholarly journals Measurement of TeV dark particles due to decay of heavy dark matter in the earth core at IceCube

2021 ◽  
Vol 32 ◽  
pp. 100809
Author(s):  
Ye Xu
Keyword(s):  
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yang Bai ◽  
Joshua Berger ◽  
Mrunal Korwar ◽  
Nicholas Orlofsky

Abstract Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.


2020 ◽  
Vol 124 (5) ◽  
Author(s):  
C. J. Horowitz ◽  
R. Widmer-Schnidrig
Keyword(s):  

Galaxies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 42 ◽  
Author(s):  
Yoshiaki Sofue

We show that the Earth acts as a high-efficiency gravitational collector of low-velocity flow of dark matter (DM). The focal point appears on the Earth’s surface, when the DM flow speed is about 17 km/s with respect to the geo-center. We discuss diurnal modulation of the local DM density influenced by the Earth’s gravity. We also touch upon similar effects on galactic and solar system objects.


1993 ◽  
Vol 47 (12) ◽  
pp. 5238-5246 ◽  
Author(s):  
J. I. Collar ◽  
F. T. Avignone

Sign in / Sign up

Export Citation Format

Share Document