earth core
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 1)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuxin Wei ◽  
Guangxin Duan ◽  
Baoxing Huang ◽  
Shanshan Qiu ◽  
Dandan Zhou ◽  
...  

Abstract Background Fluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200–400 nm) and visible light (Vis, 400–650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000–1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. Results Here, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core–shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What’s more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. Conclusions The rationally designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision. Graphical abstract


2021 ◽  
Author(s):  
Zhuxin Wei ◽  
Guangxin Duan ◽  
Baoxing Huang ◽  
Shanshan Qiu ◽  
Dandan Zhou ◽  
...  

Abstract BackgroundFluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200-400 nm) and visible light (Vis, 400-650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000-1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. ResultsHere, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core-shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What’s more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. ConclusionsThe rational designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qihao Yu ◽  
Xiu-Ling Ren ◽  
Pan Yue ◽  
Gui-Ke Zhang ◽  
Jun-Feng Wang ◽  
...  

Winter construction in seasonally frozen soil areas is inevitable. The variation of ambient temperature causes the freeze-thaw of the filling soils and its impact is significant, and whether the countermeasures can be effectively established and adopted is particularly important for the management and control of the construction quality of the project. This paper conducts systematic research based on the winter construction process of the dam core wall of the Lianghekou Hydropower Station, which is the third highest earth-core rockfill dam in the world under construction. The results show that for the construction site in the seasonally frozen soil area, there is a development process of the short-term frozen soils for the filling soils under the environment with low temperature in winter. The soil underwent a high-frequency freeze-thaw process wherein it was frozen at night and completely thawed during the day. During the freezing process, a large number of thin-layered segregated ice developed inside the soil to form a thin-layered or integral cryostructure, which will have an adverse effect on the engineering properties and the quality of the filling soils. And, the field tests demonstrate that the filling compaction degree of the frozen soils is difficult to meet the designed requirements. In order to effectively cope with the adverse effect of the freeze-thaw on the construction quality during the construction process, based on the analysis of the freeze-thaw characteristics of soils and its influence, and the energy exchange process of soils on-site, the principles and methods for establishing the freeze prevention system during the winter construction process are established, and a comprehensive monitoring system suitable for on-site is established in this paper. This research will provide an important reference for the scientific management and efficiency improvement of the winter construction process of the dams in cold regions.


2021 ◽  
Vol 80 (8) ◽  
Author(s):  
Feng Ming ◽  
Xiu-Ling Ren ◽  
Jin-guo Wang ◽  
Zhi-wei Zhou ◽  
En-Long Liu ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Peter Agbo ◽  
Jacob S. Kanady ◽  
Rebecca J. Abergel

This report details spectroscopic characterizations of rare-earth, core-shell nanoparticles decorated with the f-element chelator 3,4,3-LI(1,2-HOPO). Evidence of photon downconversion is corroborated through detailed power dependence measurements, which suggest two-photon decay paths are active in these materials, albeit only representing a minority contribution of the sum luminescence, with emission being dominated by normal, Stokes' shifted fluorescence. Specifically, ultraviolet ligand photosensitization of Nd3+ ions in a NaGdF4 host shell results in energy transfer to a Nd3+/Yb3+-doped NaGdF4 nanoparticle core. The population and subsequent decay of core, Yb3+2F5/2 states result in a spectral shift of 620 nm, manifested in a NIR emission displaying luminescence profiles diagnostic of Yb3+ and Nd3+ excited state decays. Emphasis is placed on the generality of this material architecture for realizing ligand-pumped, multi-photon downconversion, with the Nd3+/Yb3+ system presented here functioning as a working prototype for a design principle that may be readily extended to other lanthanide pairs.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 412
Author(s):  
Hans J. Mueller ◽  
Heiner Vollstädt

The development of the geophysical high pressure research in the former German Democratic Republic (GDR) is described here. The GDR was a German state established in 1949 at the territory of the Soviet occupation zone. The different experimental investigations under extreme pressure and temperature conditions and their industrial applications, including the pilot manufacture of synthetic diamonds are explained. A review of the research topics pursued including experiments on lunar material and Earth core/mantle material is described.


Sign in / Sign up

Export Citation Format

Share Document