Mechanical degradation of contemporary CAD/CAM resin composite materials after water ageing

Author(s):  
Michael Wendler ◽  
Anja Stenger ◽  
Julian Ripper ◽  
Eva Priewich ◽  
Renan Belli ◽  
...  
2019 ◽  
Vol 44 (5) ◽  
pp. E254-E262 ◽  
Author(s):  
EB Benalcázar Jalkh ◽  
CM Machado ◽  
M Gianinni ◽  
I Beltramini ◽  
MMT Piza ◽  
...  

SUMMARY New resin-based restorative materials have been developed, such as computer-aided design/computer-aided manufacturing (CAD/CAM) and bulk-fill composites, as an alternative to traditional layering techniques. This study evaluated the biaxial flexural strength (BFS) before and after thermocycling of five different resin composites: one hybrid resin/ceramic CAD/CAM indirect material, Lava Ultimate CAD-CAM Restorative (LU, 3M Oral Care); a conventional composite, Filtek Z350 XT (Z350, 3M Oral Care); two bulk-fill composites, Tetric N-Ceram Bulk Fill (TBF, Ivoclar Vivadent) and Filtek Bulk Fill (FBF, 3M Oral Care); and one bulk-fill flow resin composite, Filtek Bulk Fill Flow (FBFF, 3M Oral Care). Three hundred disc-shaped specimens (6.5 mm in diameter and 0.5 mm thick) were fabricated and divided into five groups (n=30 for each composite and condition). The BFS test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min immediately (i, 24 hours) and after thermocycling (a, 500 thermal cycles of 5°C to 55°C with a 30-second dwell time). The Weibull modulus (m) and characteristic stress (η) were calculated, and a contour plot was used (m vs η) to detect differences between groups (95% two-sided confidence intervals). Significantly higher characteristic stress was observed for LUi (286.6 MPa) and Z350i (248.8 MPa) compared to the bulk-fill groups (FBFi=187.9 MPa, FBFFi=175.9 MPa, TBFi=149.9 MPa), with no differences between LUi and Z350i. Thermocycling significantly decreased the characteristic stress of all groups with the highest values observed for LUa (186.7 MPa) and Z350a (188.9 MPa) and the lowest for FBFFa (90.3 MPa). Intermediate values were observed for FBFa (151.6 MPa) and TBFa (122.8 MPa). The Weibull modulus decreased only for FBFa compared to FBFi. Composition and thermocycling significantly influenced the biaxial flexural strength of resin composite materials.


2019 ◽  
Vol 44 (4) ◽  
pp. E190-E201 ◽  
Author(s):  
R Hampe ◽  
B Theelke ◽  
N Lümkemann ◽  
M Eichberger ◽  
B Stawarczyk

SUMMARY Objectives: To evaluate and compare the fracture toughness of dental CAD/CAM materials of different material classes intended for in-office milling (glass ceramics, hybrid, resin composites) and the influence of aging on this property. Methods and Materials: The fracture toughness (critical intensity factor, KIc) values of 9 CAD/CAM restorative materials (Ambarino High-Class, Brilliant Crios, Cerasmart, exp. CAD/CAM composite, Katana Avencia, Lava Ultimate, VITA Enamic, IPS Empress CAD, and IPS e.max CAD) were determined using the SEVNB method in a four-point bending setup. Twenty bending bars of each material with a 4 × 3 cross and a minimum length of 12 mm were cut out of CAD/CAM milling blocks. Notching was done starting with a pre-cut and consecutive polishing and v-shaping with a razor blade, resulting in a final depth of v-shaped notches of between 0.8 and 1.2 mm. Half of the specimens were selected for initial fracture toughness measurements. The others were thermocycled in distilled water for 30,000× (5/55°C; 30-second dwell time) before testing. Specimen fracture surfaces were analyzed using confocal laser scanning microscopy. Results: All specimens for each material fractured into two fragments and showed the typical compression curl and brittle failure markings. Comparing initial KIc values, lithium disilicate ceramic IPS e.max CAD showed significantly the highest and leucite-reinforced ceramic IPS Empress CAD significantly the lowest KIc values (p<0.001). All tested CAD/CAM materials with a resin component ranged in the same KIc value group (p>0.999-0.060). After thermal cycling, the highest KIc values were measured for lithium disilicate ceramic IPS e.max CAD, followed by resin composite materials Ambarino High-Class (p<0.001-0.006) and hybrid material VITA Enamic (p<0.001-0.016), while the significantly lowest values were reflected for the resin composite materials Cerasmart, LAVA Ultimate (p<0.001-0.006), and Katana Avencia (p<0.001-0.009). The roughness of the fracture surfaces varied depending on the microstructure of the respective material. The ceramic surfaces showed the smoothest surfaces. The fracture surface of VITA Enamic revealed microstructural inhomogeneities and microcracks. For CAD/CAM resin composite materials, crack paths through the matrix and interfaces of matrix and fillers could be observed at the microstructure level. Conclusions: The materials tested show differences in fracture toughness typical for the class they belong to. With one exception (Ambarino High-Class), thermocycling affected the fracture toughness of materials with a resin component negatively, whereas the leucite and lithium disilicate ceramic showed stability.


Author(s):  
Osamu Kaneko ◽  
Masaki Asakura ◽  
Tatsuhide Hayashi ◽  
Daisuke Kato ◽  
Seiji Ban ◽  
...  

2017 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Amal Alharbi ◽  
Stefano Ardu ◽  
Tissiana Bortolotto ◽  
Ivo Krejci

Composites ◽  
1988 ◽  
Vol 19 (4) ◽  
pp. 300-310 ◽  
Author(s):  
S. Lee ◽  
R.F. Scott ◽  
P.C. Gaudert ◽  
W.H. Ubbink ◽  
C. Poon

2007 ◽  
Vol 26 (5) ◽  
pp. 613-622 ◽  
Author(s):  
Masahiro ONO ◽  
Toru NIKAIDO ◽  
Masaomi IKEDA ◽  
Susumu IMAI ◽  
Nobuhiro HANADA ◽  
...  

2019 ◽  
Vol 35 (8) ◽  
pp. 1166-1172 ◽  
Author(s):  
Rasha A. Alamoush ◽  
Julian D. Satterthwaite ◽  
Nick Silikas ◽  
D.C. Watts
Keyword(s):  

Dental Update ◽  
2008 ◽  
Vol 35 (9) ◽  
pp. 600-606 ◽  
Author(s):  
Stephen J Bonsor

Sign in / Sign up

Export Citation Format

Share Document