Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions

Desalination ◽  
2010 ◽  
Vol 250 (2) ◽  
pp. 801-804 ◽  
Author(s):  
Kyung-Guen Song ◽  
Jinwoo Cho ◽  
Kang-Woo Cho ◽  
Sang-Don Kim ◽  
Kyu-Hong Ahn
2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

1992 ◽  
Vol 25 (4-5) ◽  
pp. 281-287 ◽  
Author(s):  
P. T. Bowen ◽  
V. S. Magar ◽  
R. Otoski ◽  
T. McMonagle

To determine secondary treatment design parameters for the Massachusetts Water Resources Authority Deer Island Treatment Facility, a pilot study was conducted. Due to the constricted site, oxygen activated sludge processes were considered. A pilot-scale conventional oxygen activated sludge (COAS) and COAS preceded by an anaerobic selector process (ASP) were compared. Both processes achieved comparable levels of total and soluble BOD, total and soluble COD, total nitrogen, ammonia nitrogen, and phosphorus removal. Higher percent removals occurred during the spring and summer flow periods. Neither process appeared more stable than the other with respect to changing influent loading and hydraulic stress. Differences in the process were the sludge settleability and sludge yield. The ASP had a slightly higher sludge yield than COAS, but the solids settled faster.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 217-225 ◽  
Author(s):  
G.T. Seo ◽  
T.S. Lee ◽  
B.H. Moon ◽  
J.H. Lim ◽  
K.S. Lee

A submerged membrane bioreactor (SMBR) was operated in 2-stage intermittent aeration for simultaneous removal of organic matter, nitrogen and phosphorus. The system consists of two reactors with a total volume of 0.27 m3 (1st reactor 0.09 m3 and 2nd 0.18 m3). Real domestic wastewater was used as influent to the system. Membrane used for this experiment was hollow fiber polyethylene membrane with pore size of 0.1μm and effective surface area, 4 m2. The membrane was submerged in the 2nd reactor for suction type filtration. Experiment was carried out in two phases varying the time cycles of aeration and non-aeration. SRT was maintained at 25 days and HRT, 16–19 hours. MLSS concentration in the reactors was in the range of 2,700–3,400 mg/l. The MLSS internal recycling ratio was maintained at 100% of influent flow rate. When time cycles of aeration and non-aeration were set at 30/90 min and 60/60 min in reactor 1 and 2, the removal of BOD and COD was 98.3% and 95.6%, respectively. A relatively low nitrogen and phosphorus removal was observed in this condition (73.6% as T–N and 46.6% as T–P). However, with 60/60 min intermittent aeration conditions for both reactors, the removal rate of nitrogen and phosphorus for two weeks steady state were enhanced to 91.6% as TN and 66% as TP, respectively. Further a high organic removal (98% BOD and 96.2% COD) was achieved too. In these conditions, the membrane of flux declined from 0.1 m/d to 0.08 m/d and suction filtration was at 10–12 kPa for a month long operation period.


2011 ◽  
Vol 356-360 ◽  
pp. 1647-1654
Author(s):  
Rong Chang Wang ◽  
Shu Peng Si ◽  
Dian Hai Yang ◽  
Jian Fu Zhao

The performance of nitrogen and phosphorus removal was investigated in pilot-scale A2/O, A2/O-MBR and mA2/O-MBR processes for treating municipal wastewater. The results show that these processes had a similar COD and ammonia removal efficiency, but A2/O process had better denitrification efficiency than MBR processes. In order to explain the difference of nitrogen and phosphorus removal performance in the investigated processes, specific oxygen uptake rate (SOUR), specific denitrification rate (SDNR), anaerobic release rate and anoxic and aerobic uptake rate of the activated sludge taken from A2/O and mA2/O-MBR processes were compared. The results show that the activated sludge of mA2/O-MBR process had a higher nitrifying activity in aerobic tank than A2/O process, the denitrifying activity in anoxic tanks were roughly equal and A2/O process had a higher denitrifying phosphorus removal activity in anoxic tank than mA2/O-MBR process.


Sign in / Sign up

Export Citation Format

Share Document