Numerical simulation and parametric study of forced convective condensation in cylindrical vertical channels in multiple effect desalination systems

Desalination ◽  
2010 ◽  
Vol 254 (1-3) ◽  
pp. 49-57 ◽  
Author(s):  
R. Kouhikamali
Author(s):  
J.Ajay Paul ◽  
Sagar Chavan Vijay ◽  
U. Magarajan ◽  
R.Thundil Karuppa Raj

In this experiment the single cylinder air cooled engines was assumed to be a set of annular fins mounted on a cylinder. Numerical simulations were carried out to determine the heat transfer characteristics of different fin parameters namely, number of fins, fin thickness at varying air velocities. A cylinder with a single fin mounted on it was tested experimentally. The numerical simulation of the same setup was done using CFD. The results validated with close accuracy with the experimental results. Cylinders with fins of 4 mm and 6 mm thickness were simulated for 1, 3, 4 &6 fin configurations.


2020 ◽  
Vol 60 (9) ◽  
pp. 2111-2121
Author(s):  
Youbin Kwon ◽  
Jihyun Yoon ◽  
Seung‐Yeol Jeon ◽  
Daehwan Cho ◽  
Kwangjin Lee ◽  
...  

Author(s):  
Kiyoharu Tsunokawa ◽  
Taku Ohira ◽  
Naoki Miura ◽  
Yasumi Kitajima ◽  
Daisuke Yoshimura

Although the reinforcement for openings is checked in accordance with design / construction standard when thinning was observed in T-pipes, this evaluation becomes too conservative or requires much time and effort. This paper describes additional parametric study results and proposes a guideline for thickness management of wall thinning T-pipes. On the other papers related to this project, the experiment and numerical simulation results are reported. This paper referred these results and performed further investigation.


2014 ◽  
Vol 638-640 ◽  
pp. 1750-1753
Author(s):  
Yu Chao Zheng ◽  
Yang Yan ◽  
Pei Jun Wang

A systematic parametric study was carried out to investigate the elastic and elastic-plastic buckling behaviors of imperfect steel shell subject to axial compression and internal pressure. Studied parameters include the magnitude of internal pressure, steel strength, and ratio of cylinder radius to shell thickness. Design equations were proposed for calculating the elastic and elastic-plastic buckling strength of imperfect steel shells under combination of axial compression and internal pressure. The buckling strength predicated by proposed equations agrees well with that from the numerical simulation.


1992 ◽  
Vol 114 (1) ◽  
pp. 50-62 ◽  
Author(s):  
J. Y. Dyau ◽  
S. Kyriakides

This paper is concerned with the response of long, relatively thin-walled tubes bent into the plastic range in the presence of axial tension. The work is motivated by the design needs of pipelines installed and operated in deep offshore waters. The problem is studied through a combination of experiment and analysis. In the experiments, long metal tubes were bent over a smooth, circular, rigid surface (mandrel). Bending of the tubes was achieved by shear and axial end loads. The experimental arrangement is such that a significant section of the test specimen is loaded and deformed in an axially uniform fashion. The ovalization induced in the specimen was measured as a function of the axial load in the tube for two mandrel radii. A two-dimensional numerical simulation of the problem has been developed and validated against the experimental results. This analysis was used to conduct a parametric study of the effect of tension on the ovalization induced in a long tube during bending.


2017 ◽  
Vol 99 (1) ◽  
pp. 47-69 ◽  
Author(s):  
M. Sasamori ◽  
O. Iihama ◽  
H. Mamori ◽  
K. Iwamoto ◽  
A. Murata

2012 ◽  
Vol 225 ◽  
pp. 150-157 ◽  
Author(s):  
Harijono Djojodihardjo ◽  
Hamed Jamali ◽  
Alireza Shokrani ◽  
Faizal Mustapha ◽  
Rizal Zahari ◽  
...  

Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspective, the first objective of this work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study without considering the surface impact effect. The analysis is carried out from first principles for static and dynamic analysis; the latter is based on dynamic response analysis in the elastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at optimum configuration in terms of loading, structural dimensions, and material properties, among others. The codes developed are validated for generic cases. Further simulations are carried out using commercial codes for some sample applications to explore impact resilient structural characteristics in the elastic region.


Sign in / Sign up

Export Citation Format

Share Document