scholarly journals Complementary time-lapse datasets of x-ray computed tomography and real-time strain mapping for an ex-situ study of non-crimp glass fibre composites under fatigue loading

Data in Brief ◽  
2021 ◽  
pp. 107157
Author(s):  
Anuj Prajapati ◽  
Stuart Morse ◽  
Ali Chirazi ◽  
Timothy Burnett ◽  
Philip Withers
Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2340 ◽  
Author(s):  
Ying Wang ◽  
Lars Mikkelsen ◽  
Grzegorz Pyka ◽  
Philip Withers

Understanding the fatigue damage mechanisms in composite materials is of great importance in the wind turbine industry because of the very large number of loading cycles rotor blades undergo during their service life. In this paper, the fatigue damage mechanisms of a non-crimp unidirectional (UD) glass fibre reinforced polymer (GFRP) used in wind turbine blades are characterised by time-lapse ex-situ helical X-ray computed tomography (CT) at different stages through its fatigue life. Our observations validate the hypothesis that off-axis cracking in secondary oriented fibre bundles, the so-called backing bundles, are directly related to fibre fractures in the UD bundles. Using helical X-ray CT we are able to follow the fatigue damage evolution in the composite over a length of 20 mm in the UD fibre direction using a voxel size of (2.75 µm)3. A staining approach was used to enhance the detectability of the narrow off-axis matrix and interface cracks, partly closed fibre fractures and thin longitudinal splits. Instead of being evenly distributed, fibre fractures in the UD bundles nucleate and propagate locally where backing bundles cross-over, or where stitching threads cross-over. In addition, UD fibre fractures can also be initiated by the presence of extensive debonding and longitudinal splitting, which were found to develop from debonding of the stitching threads near surface. The splits lower the lateral constraint of the originally closely packed UD fibres, which could potentially make the composite susceptible to compressive loads as well as the environment in service. The results here indicate that further research into the better design of the positioning of stitching threads, and backing fibre cross-over regions is required, as well as new approaches to control the positions of UD fibres.


Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 228-233 ◽  
Author(s):  
Kristine M. Jespersen ◽  
Jens A. Glud ◽  
Jens Zangenberg ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada ◽  
...  

Author(s):  
Brandon Lane ◽  
Ho Yeung

This document provides details on the files available in the dataset “Overhang Part X4” pertaining to a three-dimensional (3D) additive manufacturing (AM) build performed on the Additive Manufacturing Metrology Testbed (AMMT) by Ho Yeung and Brandon Lane on June 28, 2019. The files include the input command files, materials data, in-situ process monitoring data, and metadata. This data is one of a set of “AMMT Process Monitoring Datasets”, as part of the Metrology for Real-Time Monitoring of Additive Manufacturing project at the National Institute of Standards and Technology (NIST). Ex-situ part characterization data, including X-ray computed tomography (XCT) measurements, will be provided as it is made available. Readers should refer to the AMMT datasets web page for updates.


2019 ◽  
Vol 236 ◽  
pp. 128-130 ◽  
Author(s):  
Peter Wagner ◽  
Oliver Schwarzhaupt ◽  
Michael May

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3416 ◽  
Author(s):  
Zartasha Mustansar ◽  
Samuel A. McDonald ◽  
William Irvin Sellers ◽  
Phillip Lars Manning ◽  
Tristan Lowe ◽  
...  

This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.


2018 ◽  
Vol 52 (21) ◽  
pp. 2899-2917 ◽  
Author(s):  
DM Grogan ◽  
M Flanagan ◽  
M Walls ◽  
SB Leen ◽  
A Doyle ◽  
...  

The lifespan and economic viability of tidal energy devices are constrained, in part, by the complex degradation of the tidal turbine blade materials due to prolonged immersion in a hostile sub-sea environment. Seawater penetration is a significant degradation mechanism in composite materials. This work aims to investigate the influence of microstructure and hydrostatic pressure on water absorption in four polymer composites which are candidate materials for use in tidal energy devices. These materials are: a glass fibre powder epoxy, a carbon fibre powder epoxy, glass fibre Ampreg epoxy and a chopped fibre glass fibre Polyether Ether Ketone. X-ray computed tomography is used to characterise the voids, resin-rich areas and other manufacturing defects present in each material. These defects are known to significantly alter the rate of moisture diffusion, as well as the total uptake of water at saturation. The samples are then exposed to accelerated water aging and hydrostatic pressurisation in order to simulate a range of expected sub-sea operating conditions. The material micro-structure, the matrix material and pressurisation level are shown to strongly influence both the moisture absorption rate and total water uptake. Significant volumetric changes are also noted for all samples, both during and after aging. X-ray computed tomography scans of specimens also provide a unique insight into the role of voids in storing water once a material has reached saturation.


2014 ◽  
Vol 778-780 ◽  
pp. 9-12 ◽  
Author(s):  
Georg Neubauer ◽  
Michael Salamon ◽  
Norman Uhlmann ◽  
Peter J. Wellmann

In this paper, we present our new setup and technique for obtaining a real-time 3-D volume shape of the SiC crystal using X-ray computed tomography (CT). Hence, it is possible to determine in-situ the shape of the growth interface with high precision at growth temperatures above 2000 °C in a conventional 3" physical vapor transport (PVT) growth system. We show that the size and shape of a facet can be monitored at different stages during growth and furthermore the crystals face boundary can be determined with high precision throughout the whole growth process.


Author(s):  
Ketan Pancholi ◽  
Vineet Jha ◽  
Neville Dodds ◽  
Dehong Huo ◽  
James Latto

The failure mechanism of the composite flexible riser, comprising a pipe with melt fused carbon fiber tape or pultruded composite rods, is not well understood. As there is change in the configuration of the composite layers and its manufacturing methods, so the bulk material property also changes significantly. To capture the correct material model for global FE analysis, real time x-ray computed tomography was performed while the flexible pipe was being compressed. For developing a constitutive model for the composites, a time series of 3D volume images were analyzed quantifying the local strains responsible for the debonding of the layers and the crack development. These values were then used to understand the inter-layer adhesion leading to correlation between the FE global modelling and experiments capable of capturing the progressive delamination. The resulting global modelling was used to determine the area under compressive loading. The effect of global sea conditions and cumulative damage was noted. A correlation between the global model and experiments can be used to optimize riser performance. This method hopes to capture the overall behavior of flexible pipe under compressive loading.


2013 ◽  
Vol 748 ◽  
pp. 651-654
Author(s):  
Shi Hong Yue ◽  
Xiu Juan Bao ◽  
Jin Xin Zhang

The existing x-ray computed tomography algorithm simulation assume the complete measurements of the investigated objectives to be available, but this is not true in most applications. To overcome the problem, we creatively propose a method of image reconstruction based on fuzzy clustering algorithm under limited measurements. Different from the existing algorithms, we map all measurements into a set of vectors and cluster all vectors for the image reconstruction. The proposed algorithm aims to be easily realized, lower time complexity, and applicable in a real-time manner in case of limited measurements of the investigated objectives. Experiments demonstrate the effectiveness and efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document