scholarly journals Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: In vitro and in vivo analysis

2012 ◽  
Vol 84 (5) ◽  
pp. 355-365 ◽  
Author(s):  
A. Gärtner ◽  
T. Pereira ◽  
P.A.S. Armada-da-Silva ◽  
I. Amorim ◽  
R. Gomes ◽  
...  
2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Peng Huang ◽  
Li Min Lin ◽  
Xiao Ying Wu ◽  
Qiu Ling Tang ◽  
Xue Yong Feng ◽  
...  

2021 ◽  
Vol 37 ◽  
pp. e37002
Author(s):  
Gustavo Cardoso da Silva Neves ◽  
Napoleão Martins Argôlo Neto ◽  
Maíra Soares Ferraz ◽  
Clautina Ribeiro de Moraes Da Costa ◽  
Andressa Rêgo Da Rocha ◽  
...  

Mesenchymal stem cells (MSCs), obtained from several anatomical sites, have already been described, characterized and used in therapeutic models for tissue repair. The umbilical cord mesenchymal stem cells, represented by cells from arteries and veins walls, as well as Wharton's jelly are easy to be obtained, highly available, require no invasive procedure, do not present risk to donors and do not present ethical limitation. The aim of this research was to analyze the plasticity of Wharton's jelly mesenchymal stem cells (WJ-MSCs) of goat, evaluating their behavior in vitro and characterizing them immunophenotypically. Thus, tests were performed on colony forming units, viability and cell growth curve, flow cytometry analysis and plasticity potential. Goat umbilical cord matrix cells exhibited fibroblastoid morphology with colony formation and self-renewal ability, always maintaining their undifferentiated state up to the eighth passage (P8). The growth curve kinetics exhibited the LAG, LOG, and DECAY phases, without displaying a PLATEAU phase. The plasticity assay demonstrated positive differentiation for osteogenic, adipogenic and chondrogenic lines, characterized by the synthesis of intracytoplasmic granules or extracellular matrix with the presence of calcium, lipids and proteoglycans. Flow cytometry demonstrated the expression of CD90 and CD105; absence of CD14 expression.  It is concluded that the cell population isolated from the Wharton's  jelly of goat constitutes a representative sample of mesenchymal stem cells, with great possibilities in the field of regenerative and reproductive medicine.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shuyun Liu ◽  
Yanhui Jia ◽  
Mei Yuan ◽  
Weimin Guo ◽  
Jingxiang Huang ◽  
...  

Umbilical cord Wharton’s jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications.


2019 ◽  
Vol 20 (10) ◽  
pp. 2477 ◽  
Author(s):  
Young Eun Kim ◽  
Se In Sung ◽  
Yun Sil Chang ◽  
So Yoon Ahn ◽  
Dong Kyung Sung ◽  
...  

We investigated whether thrombin preconditioning of human Wharton’s jelly–derived mesenchymal stem cells (MSCs) improves paracrine potency and thus the therapeutic efficacy of naïve MSCs against severe hypoxic ischemic encephalopathy (HIE). Thrombin preconditioning significantly enhances the neuroprotective anti-oxidative, anti-apoptotic, and anti-cytotoxic effects of naïve MSCs against oxygen–glucose deprivation (OGD) of cortical neurons in vitro. Severe HIE was induced in vivo using unilateral carotid artery ligation and hypoxia for 2 h and confirmed using brain magnetic resonance imaging (MRI) involving >40% of ipsilateral hemisphere at postnatal day (P) 7 in newborn rats. Delayed intraventricular transplantation of 1 × 105 thrombin preconditioned but not naïve MSCs at 24 h after hypothermia significantly enhanced observed anti-inflammatory, anti-astroglial, and anti-apoptotic effects and the ensuing brain infarction; behavioral tests, such as cylinder rearing and negative geotaxis tests, were conducted at P42. In summary, thrombin preconditioning of human Wharton’s jelly-derived MSCs significantly boosted the neuroprotective effects of naïve MSCs against OGD in vitro by enhancing their anti-oxidative, anti-apoptotic, and anti-cytotoxic effects, and significantly attenuated the severe HIE-induced brain infarction and improved behavioral function tests in vivo by maximizing their paracrine anti-inflammatory, anti-astroglial, and anti-apoptotic effects.


Sign in / Sign up

Export Citation Format

Share Document