scholarly journals Treatment of human cells with 5-aza-dC induces formation of PARP1-DNA covalent adducts at genomic regions targeted by DNMT1

DNA Repair ◽  
2020 ◽  
Vol 96 ◽  
pp. 102977
Author(s):  
Kostantin Kiianitsa ◽  
Yinbo Zhang ◽  
Nancy Maizels
2019 ◽  
Author(s):  
Kostantin Kiianitsa ◽  
Nancy Maizels

ABSTRACTThe nucleoside analog 5-aza-2’-deoxycytidine (5-aza-dC) is used to treat some hematopoietic malignancies. The mechanism of cell killing depends upon DNMT1, but is otherwise not clearly defined. Here we show that PARP1 forms covalent DNA adducts in human lymphoblast or fibroblasts treated with 5-aza-dC. Some adducts recovered from 5-aza-dC-treated cells have undergone cleavage by apoptotic caspases 3/7. Mapping of PARP1-DNA adducts, by a new method, “Adduct-Seq”, demonstrates adduct enrichment at CpG-dense genomic locations that are targets of maintenance methylation by DNMT1. Covalent protein-DNA adducts can arrest replication and induce apoptosis, and these results raise the possibility that induction of PARP1-DNA adducts may contribute to cell killing in response to treatment with 5-aza-dC.


Chromosoma ◽  
2011 ◽  
Vol 121 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Alexander Samoshkin ◽  
Stanimir Dulev ◽  
Dmitry Loukinov ◽  
Jeffrey A. Rosenfeld ◽  
Alexander V. Strunnikov

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Philippe Fernandes ◽  
Benoit Miotto ◽  
Claude Saint-Ruf ◽  
Maha Said ◽  
Viviana Barra ◽  
...  

AbstractCommon fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.


2002 ◽  
Vol 72 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Kei-Ichi Hirai ◽  
Jie-Hong Pan ◽  
Ying-Bo Shui ◽  
Eriko Simamura ◽  
Hiroki Shimada ◽  
...  

The possible protection of cultured human cells from acute dioxin injury by antioxidants was investigated. The most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), caused vacuolization of the smooth endoplasmic reticulum and Golgi apparatus in cultured human conjunctival epithelial cells and cervical cancer cells. Subsequent nuclear damage included a deep irregular indentation resulting in cell death. A dosage of 30–40 ng/mL TCDD induced maximal intracellular production of H2O2 at 30 minutes and led to severe cell death (0–31% survival) at two hours. A dose of 1.7 mM alpha-tocopherol or 1 mM L-dehydroascorbic acid significantly protected human cells against acute TCDD injuries (78–97% survivals), but vitamin C did not provide this protection. These results indicate that accidental exposure to fatal doses of TCDD causes cytoplasmic free radical production within the smooth endoplasmic reticular systems, resulting in severe cytotoxicity, and that vitamin E and dehydroascorbic acid can protect against TCDD-induced cell damage.


2003 ◽  
Vol 104 ◽  
pp. 289-292 ◽  
Author(s):  
R. Ortega ◽  
B. Fayard ◽  
M. Salomé ◽  
G. Devès ◽  
J. Susini

2004 ◽  
Vol 36 (05) ◽  
Author(s):  
U Henning ◽  
K Krieger ◽  
S Loeffler ◽  
A Klimke
Keyword(s):  

2015 ◽  
Author(s):  
Gerard Ruiz Babot ◽  
Irene Hadjidemetriou ◽  
Sharon Jane Ajodha ◽  
David Taylor ◽  
Norman Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document