Parameters estimation for continuous-time heavy-tailed signals modeled by α -stable autoregressive processes

2016 ◽  
Vol 57 ◽  
pp. 79-92 ◽  
Author(s):  
Zeinab Hashemifard ◽  
Hamidreza Amindavar ◽  
Arash Amini
2019 ◽  
Vol 35 (6) ◽  
pp. 1234-1270 ◽  
Author(s):  
Sébastien Fries ◽  
Jean-Michel Zakoian

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.


1994 ◽  
Vol 31 (4) ◽  
pp. 1103-1109 ◽  
Author(s):  
Rob J. Hyndman

Continuous-time threshold autoregressive (CTAR) processes have been developed in the past few years for modelling non-linear time series observed at irregular intervals. Several approximating processes are given here which are useful for simulation and inference. Each of the approximating processes implicitly defines conditions on the thresholds, thus providing greater understanding of the way in which boundary conditions arise.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1431
Author(s):  
Gaia Pozzoli ◽  
Mattia Radice ◽  
Manuele Onofri ◽  
Roberto Artuso

We consider a continuous-time random walk which is the generalization, by means of the introduction of waiting periods on sites, of the one-dimensional non-homogeneous random walk with a position-dependent drift known in the mathematical literature as Gillis random walk. This modified stochastic process allows to significantly change local, non-local and transport properties in the presence of heavy-tailed waiting-time distributions lacking the first moment: we provide here exact results concerning hitting times, first-time events, survival probabilities, occupation times, the moments spectrum and the statistics of records. Specifically, normal diffusion gives way to subdiffusion and we are witnessing the breaking of ergodicity. Furthermore we also test our theoretical predictions with numerical simulations.


2004 ◽  
Vol 41 (3) ◽  
pp. 639-653 ◽  
Author(s):  
Assaf Zeevi ◽  
Peter W. Glynn

This paper studies recurrence properties of autoregressive (AR) processes with ‘super-heavy-tailed’ innovations. Specifically, we study the case where the innovations are distributed, roughly speaking, as log-Pareto random variables (i.e. the tail decay is essentially a logarithm raised to some power). We show that these processes exhibit interesting and somewhat surprising behaviour. In particular, we show that AR(1) processes, with the usual root assumption that is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the innovations follow a log-Cauchy-type distribution. In this regime, the recurrence classification of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this distribution. More generally, for log-Pareto innovations, we provide a positive-recurrence/null-recurrence/transience classification of the corresponding AR processes.


2004 ◽  
Vol 41 (03) ◽  
pp. 639-653 ◽  
Author(s):  
Assaf Zeevi ◽  
Peter W. Glynn

This paper studies recurrence properties of autoregressive (AR) processes with ‘super-heavy-tailed’ innovations. Specifically, we study the case where the innovations are distributed, roughly speaking, as log-Pareto random variables (i.e. the tail decay is essentially a logarithm raised to some power). We show that these processes exhibit interesting and somewhat surprising behaviour. In particular, we show that AR(1) processes, with the usual root assumption that is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the innovations follow a log-Cauchy-type distribution. In this regime, the recurrence classification of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this distribution. More generally, for log-Pareto innovations, we provide a positive-recurrence/null-recurrence/transience classification of the corresponding AR processes.


Sign in / Sign up

Export Citation Format

Share Document