Recurrence properties of autoregressive processes with super-heavy-tailed innovations

2004 ◽  
Vol 41 (03) ◽  
pp. 639-653 ◽  
Author(s):  
Assaf Zeevi ◽  
Peter W. Glynn

This paper studies recurrence properties of autoregressive (AR) processes with ‘super-heavy-tailed’ innovations. Specifically, we study the case where the innovations are distributed, roughly speaking, as log-Pareto random variables (i.e. the tail decay is essentially a logarithm raised to some power). We show that these processes exhibit interesting and somewhat surprising behaviour. In particular, we show that AR(1) processes, with the usual root assumption that is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the innovations follow a log-Cauchy-type distribution. In this regime, the recurrence classification of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this distribution. More generally, for log-Pareto innovations, we provide a positive-recurrence/null-recurrence/transience classification of the corresponding AR processes.

2004 ◽  
Vol 41 (3) ◽  
pp. 639-653 ◽  
Author(s):  
Assaf Zeevi ◽  
Peter W. Glynn

This paper studies recurrence properties of autoregressive (AR) processes with ‘super-heavy-tailed’ innovations. Specifically, we study the case where the innovations are distributed, roughly speaking, as log-Pareto random variables (i.e. the tail decay is essentially a logarithm raised to some power). We show that these processes exhibit interesting and somewhat surprising behaviour. In particular, we show that AR(1) processes, with the usual root assumption that is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the innovations follow a log-Cauchy-type distribution. In this regime, the recurrence classification of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this distribution. More generally, for log-Pareto innovations, we provide a positive-recurrence/null-recurrence/transience classification of the corresponding AR processes.


2019 ◽  
Vol 35 (6) ◽  
pp. 1234-1270 ◽  
Author(s):  
Sébastien Fries ◽  
Jean-Michel Zakoian

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


2018 ◽  
Vol 6 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Femin Yalcin ◽  
Serkan Eryilmaz ◽  
Ali Riza Bozbulut

AbstractIn this paper, a generalized class of run shock models associated with a bivariate sequence {(Xi, Yi)}i≥1 of correlated random variables is defined and studied. For a system that is subject to shocks of random magnitudes X1, X2, ... over time, let the random variables Y1, Y2, ... denote times between arrivals of successive shocks. The lifetime of the system under this class is defined through a compound random variable T = ∑Nt=1 Yt , where N is a stopping time for the sequence {Xi}i≤1 and represents the number of shocks that causes failure of the system. Another random variable of interest is the maximum shock size up to N, i.e. M = max {Xi, 1≤i≤ N}. Distributions of T and M are investigated when N has a phase-type distribution.


Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. eaat6412 ◽  
Author(s):  
Alan Hastings ◽  
Karen C. Abbott ◽  
Kim Cuddington ◽  
Tessa Francis ◽  
Gabriel Gellner ◽  
...  

The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.


1988 ◽  
Vol 25 (A) ◽  
pp. 275-285 ◽  
Author(s):  
R. L. Tweedie

Foster's criterion for positive recurrence of irreducible countable space Markov chains is one of the oldest tools in applied probability theory. In various papers in JAP and AAP it has been shown that, under extensions of irreducibility such as ϕ -irreducibility, analogues of and generalizations of Foster's criterion give conditions for the existence of an invariant measure π for general space chains, and for π to have a finite f-moment ∫π (dy)f(y), where f is a general function. In the case f ≡ 1 these cover the question of finiteness of π itself. In this paper we show that the same conditions imply the same conclusions without any irreducibility assumptions; Foster's criterion forces sufficient and appropriate regularity on the space automatically. The proofs involve detailed consideration of the structure of the minimal subinvariant measures of the chain. The results are applied to random coefficient autoregressive processes in order to illustrate the need to remove irreducibility conditions if possible.


Author(s):  
Vladimir Kravtsov

This article considers non-Gaussian random matrices consisting of random variables with heavy-tailed probability distributions. In probability theory heavy tails of distributions describe rare but violent events which usually have a dominant influence on the statistics. Furthermore, they completely change the universal properties of eigenvalues and eigenvectors of random matrices. This article focuses on the universal macroscopic properties of Wigner matrices belonging to the Lévy basin of attraction, matrices representing stable free random variables, and a class of heavy-tailed matrices obtained by parametric deformations of standard ensembles. It first examines the properties of heavy-tailed symmetric matrices known as Wigner–Lévy matrices before discussing free random variables and free Lévy matrices as well as heavy-tailed deformations. In particular, it describes random matrix ensembles obtained from standard ensembles by a reweighting of the probability measure. It also analyses several matrix models belonging to heavy-tailed random matrices and presents methods for integrating them.


2005 ◽  
Vol 42 (01) ◽  
pp. 153-162 ◽  
Author(s):  
Christian Y. Robert

Let (Y n , N n ) n≥1 be independent and identically distributed bivariate random variables such that the N n are positive with finite mean ν and the Y n have a common heavy-tailed distribution F. We consider the process (Z n ) n≥1 defined by Z n = Y n - Σ n-1, where It is shown that the probability that the maximum M = max n≥1 Z n exceeds x is approximately as x → ∞, where F' := 1 - F. Then we study the integrated tail of the maximum of a random walk with long-tailed increments and negative drift over the interval [0, σ], defined by some stopping time σ, in the case in which the randomly stopped sum is negative. Finally, an application to risk theory is considered.


1997 ◽  
Vol 34 (2) ◽  
pp. 293-308 ◽  
Author(s):  
C. Klüppelberg ◽  
T. Mikosch

We prove large deviation results for the random sum , , where are non-negative integer-valued random variables and are i.i.d. non-negative random variables with common distribution function F, independent of . Special attention is paid to the compound Poisson process and its ramifications. The right tail of the distribution function F is supposed to be of Pareto type (regularly or extended regularly varying). The large deviation results are applied to certain problems in insurance and finance which are related to large claims.


Sign in / Sign up

Export Citation Format

Share Document