Enhanced sparse ISAR imaging by jointly using sparsity and low-rank properties

2021 ◽  
Vol 118 ◽  
pp. 103242
Author(s):  
Ming-Jiu Lv ◽  
Wen-Feng Chen ◽  
Jian-chao Ma ◽  
Qi Cheng ◽  
Jun Yang ◽  
...  
Keyword(s):  
Low Rank ◽  
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2989
Author(s):  
Liangyou Lu ◽  
Peng Chen ◽  
Lenan Wu

Micro-Doppler generated by the micromotion of a target contaminates the inverse synthetic aperture radar (ISAR) image heavily. To acquire a clear ISAR image, removing the Micro-Doppler is an indispensable task. By exploiting the sparsity of the ISAR image and the low-rank of Micro-Doppler signal in the Range-Doppler (RD) domain, a novel Micro-Doppler removal method based on the robust principal component analysis (RPCA) framework is proposed. We formulate the model of sparse ISAR imaging for micromotion target in the framework of RPCA. Then, the imaging problem is decomposed into iterations between the sub-problem of sparse imaging and Micro-Doppler extraction. The alternative direction method of multipliers (ADMM) approach is utilized to seek for the solution of each sub-problem. Furthermore, to improve the computational efficiency and numerical robustness in the Micro-Doppler extraction, an SVD-free method is presented to further lessen the calculative burden. Experimental results with simulated data validate the effectiveness of the proposed method.


2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


Author(s):  
An Wang ◽  
Donglin Chen ◽  
Shan Cheng ◽  
Xuepeng Jiao ◽  
Wenwei Chen
Keyword(s):  
Flue Gas ◽  

2021 ◽  
Author(s):  
Mathieu Le Provost ◽  
Ricardo Baptista ◽  
Youssef Marzouk ◽  
Jeff Eldredge
Keyword(s):  
Low Rank ◽  

2011 ◽  
Vol 33 (8) ◽  
pp. 1809-1815
Author(s):  
Gang Xu ◽  
Lei Yang ◽  
Lei Zhang ◽  
Ya-chao Li ◽  
Meng-dao Xing

Sign in / Sign up

Export Citation Format

Share Document