Technology for firing low rank of gaseous fuel based on multistage preheating by recirculated hot flue gas

Author(s):  
An Wang ◽  
Donglin Chen ◽  
Shan Cheng ◽  
Xuepeng Jiao ◽  
Wenwei Chen
Keyword(s):  
Flue Gas ◽  
Author(s):  
Junjie Yan ◽  
Xiaoqu Han ◽  
Jiahuan Wang ◽  
Ming Liu ◽  
Sotirios Karellas

Lignite is a domestic strategic reserve of low rank coals in many countries for its abundant resource and competitive price. Combustion for power generation is still an important approach to its utilization. However, the high moisture content always results in low efficiencies of lignite-direct-fired power plants. Lignite pre-drying is thus proposed as an effective method to improve the energy efficiency. The present work focuses on the flue gas pre-dried lignite-fired power system (FPLPS), which is integrated with fan mill pulverizing system and waste heat recovery. The thermo-economic analysis model was developed to predict its energy saving potential at design conditions. The pre-drying upgrade factor was defined to express the coupling of pre-drying system with boiler system and the efficiency improvement effect. The energy saving potential of the FPLPS, when applied in a 600 MW supercritical power unit, was determined to be 1.48 %-pts. It was concluded that the improvement of boiler efficiency mainly resulted from the lowered boiler exhaust temperature after firing pre-dried low moisture content lignite and the lowered dryer exhaust gas temperature after pre-heating the boiler air supply. Keywords: lignite; pre-drying; thermodynamic analysis; thermo-economics


1991 ◽  
Vol 5 (4) ◽  
pp. 612-613 ◽  
Author(s):  
Donald S. Scott ◽  
Alan J. Royce

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4259
Author(s):  
Xuan Yao ◽  
Man Zhang ◽  
Boyu Deng ◽  
Xinhua Yang ◽  
Hairui Yang

Wet flue gas desulfurization (WFGD) wastewater treatment is a key problem in coal-fired plants. Traditional chemical precipitation methods cannot reach zero-liquid discharge (ZLD). In this paper, a new technology using the low-rank heat from flue gas to concentrate the wastewater for ZLD is proposed. A scrubber was built to verify the concentrating process, and the characteristics of the concentrated water were analyzed. The concentrated water was neutralized by adding Ca(OH)2 to raise the pH value. The wastewater can be concentrated 10~25 times to reduce the flow rate. The characteristics of the concentrated wastewater were studied by dosing lime. Then, liquid and solids were separated by filter pressing, the liquid was mainly composed of CaCl2, which accounts for 73.6%. The sludge is composed of CaSO4 and Mg(OH)2, depending on the lime consumption of the dosing process. Finally, the filter liquor after the filter press was mixed with ash to reach zero liquid discharge, and the sludge could be burnt after mixing with the coal or disposed by third-part vendor. This technology is demonstrated in one 600 MW unit and shows a high system reliability. The clean water is recycled by the WFGD wastewater during the evaporation. Binding on the environmental policies and large market demand of the WFGD wastewater, this technology shows a great application prospect in the future.


2011 ◽  
Vol 45 (17) ◽  
pp. 7394-7400 ◽  
Author(s):  
Hailong Li ◽  
Chang-Yu Wu ◽  
Ying Li ◽  
Junying Zhang

1912 ◽  
Vol 74 (1914supp) ◽  
pp. 159-160
Author(s):  
Lawford H. Fry
Keyword(s):  
Flue Gas ◽  

Sign in / Sign up

Export Citation Format

Share Document