scholarly journals Different mechanisms for the seasonal variations of the mesoscale eddy energy in the South China Sea

Author(s):  
Yuhui Zhao ◽  
Yang Yang ◽  
X. San Liang ◽  
Yuanzhi Zhang
2019 ◽  
Vol 38 (4) ◽  
pp. 97-105 ◽  
Author(s):  
Zhan Lian ◽  
Baonan Sun ◽  
Zexun Wei ◽  
Yonggang Wang ◽  
Xinyi Wang

2019 ◽  
Vol 38 (4) ◽  
pp. 29-38 ◽  
Author(s):  
Yongcan Zu ◽  
Shuangwen Sun ◽  
Wei Zhao ◽  
Peiliang Li ◽  
Baochao Liu ◽  
...  

Ocean Science ◽  
2011 ◽  
Vol 7 (6) ◽  
pp. 835-849 ◽  
Author(s):  
Y. Du ◽  
X. Fan ◽  
Z. He ◽  
F. Su ◽  
C. Zhou ◽  
...  

Abstract. In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. The results demonstrate that this approach is effective, and therefore provides a powerful approach to forecasts in the future studies. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m and deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of a future study.


2020 ◽  
Vol 39 (11) ◽  
pp. 91-102
Author(s):  
Runqi Huang ◽  
Lingling Xie ◽  
Quanan Zheng ◽  
Mingming Li ◽  
Peng Bai ◽  
...  

Ocean Science ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 171-182 ◽  
Author(s):  
J. Yi ◽  
Y. Du ◽  
X. Wang ◽  
Z. He ◽  
C. Zhou

Abstract. Spatial variation is important for studying the mesoscale eddies in the South China Sea (SCS). To investigate such spatial variations, this study made a clustering analysis on eddies' distribution using the K-means approach. Results showed that clustering tendency of anticyclonic eddies (AEs) and cyclonic eddies (CEs) were weak but not random, and the number of clusters were proved greater than four. Finer clustering results showed 10 regions where AEs densely populated and 6 regions for CEs in the SCS. Previous studies confirmed these partitions and possible generation mechanisms were related. Comparisons between AEs and CEs revealed that patterns of AE are relatively more aggregated than those of CE, and specific distinctions were summarized: (1) to the southwest of Luzon Island, AEs and CEs are generated spatially apart; AEs are likely located north of 14° N and closer to shore, while CEs are to the south and further offshore. (2) The central SCS and Nansha Trough are mostly dominated by AEs. (3) Along 112° E, clusters of AEs and CEs are located sequentially apart, and the pairs off Vietnam represent the dipole structures. (4) To the southwest of the Dongsha Islands, AEs are concentrated to the east of CEs. Overlaps of AEs and CEs in the northeastern and southern SCS were further examined considering seasonal variations. The northeastern overlap represented near-concentric distributions while the southern one was a mixed effect of seasonal variations, complex circulations and topography influences.


2011 ◽  
Vol 8 (3) ◽  
pp. 1261-1300
Author(s):  
Y. Du ◽  
X. Fan ◽  
Z. He ◽  
F. Su ◽  
C. Zhou ◽  
...  

Abstract. In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.


Sign in / Sign up

Export Citation Format

Share Document