Assessment of trace element and macronutrient accumulation capacity of two native plant species in three different Egyptian mine areas for remediation of contaminated soils

2019 ◽  
Vol 106 ◽  
pp. 105463 ◽  
Author(s):  
Muhammad Rizwan ◽  
Maha M. ElShamy ◽  
Heba M.M. Abdel-Aziz
2019 ◽  
Vol 65 (No. 9) ◽  
pp. 463-469 ◽  
Author(s):  
Jane Alexander Ruley ◽  
John Baptist Tumuhairwe ◽  
Alice Amoding ◽  
Emmanuel Opolot ◽  
Hannington Oryem-Origa ◽  
...  

Hydrocarbon contaminants have become a global concern due to their long-term adverse effects on soil ecosystems and human health. Successful implementation of phytoremediation to clean up hydrocarbon contaminants requires the identification of the most effective remediation plant species. Twelve native plant species of the Sudd Wetland in South Sudan were evaluated for their potential application as phytoremediators. The treatments included six total petroleum hydrocarbon (TPH) concentrations of 0, 25, 50, 75, 100 and 125 g/kg soil. The twelve native plant species tested were: Sorghum arundinaceum Desv., Oryza longistaminata A. Chev. & Roehrich, Hyparrhenia rufa Nees, Abelmoschus ficulneus L., Gossypium barbadense L., Nicotiana tabacum L., Sorghum bicolour L. Moench, Eleusine coracana Gaertn., Capsicum frutescens L., Zea mays L., Tithonia diversifolia Hemsl. and Medicago sativa L. Significant differences in phytoremediation rates were observed amongst the treatments with exception of the 125 g/kg soil concentration of hydrocarbon that was lethal to all the plant species. Over 50% TPH reduction in the 75 g/kg soil concentration was observed in contaminated soil phytoremediation in H. rufa, G. barbadense, O. longistaminata, T. diversifolia and S. arundinaceum, making them potential phytoremediators of hydrocarbon-contaminated soil in the Sudd-Wetland of South-Sudan.


2012 ◽  
Vol 113 ◽  
pp. 106-111 ◽  
Author(s):  
Jaume Bech ◽  
Paola Duran ◽  
Núria Roca ◽  
Wilfredo Poma ◽  
Isidoro Sánchez ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 713
Author(s):  
Soroush Salmani-Ghabeshi ◽  
Ximena Fadic-Ruiz ◽  
Conrado Miró-Rodríguez ◽  
Eduardo Pinilla-Gil ◽  
Francisco Cereceda-Balic

The present work investigates the uptake of selected trace elements (Cu, Sb, As, Pb, Cd, Zn, Cr, Mn, Ni, V, and Co) from soil and their accumulation in the biomass samples (leaves and flowers) of three selected native plants (namely Oenothera picensis, OP; Sphaeralcea velutina, SV; and Argemone subfusiformis, AS) around an industrial area (Puchuncaví-Ventanas) located in the Puchuncaví valley, in the central region of Chile. Primary emission sources in the area come from a copper refinery, coal-fired power plants, and a set of 14 other different industrial facilities. Trace element measurements in the native plants of this area and the ability to transfer of these pollutants from soil to plants (transfer factor) have been assessed in order to identify the potential use of these plant species for phytoremediation. Preliminary results showed a high concentration of trace elements in the OP, SV, and AS samples. The concentration of these elements in the plants was found to be inversely correlated to the distance of the primary emission sources. Moreover, the high concentrations of trace elements such as Cu, As, Cr and V, upon the toxic limits in the native plant species, suggest the need for continuous monitoring of the region. The OP species was identified as the plant with the highest capacity for trace elements accumulation, which also showed higher accumulation potential in whole aerial parts than in leaves. Transfer factor values suggested that these native plants had phytoremediation potential for the elements Cu, Pb, As, Ni, and Cr. This study provides preliminary baseline information on the trace element compositions of important native plants and soil in the Puchuncaví-Ventanas area for phytoremediation purposes.


2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke

2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones

Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel

2021 ◽  
Vol 11 (4) ◽  
pp. 1769
Author(s):  
María Noelia Jiménez ◽  
Gianluigi Bacchetta ◽  
Francisco Bruno Navarro ◽  
Mauro Casti ◽  
Emilia Fernández-Ondoño

The use of plant species to stabilize and accumulate trace elements in contaminated soils is considered of great usefulness given the difficulty of decontaminating large areas subjected to mining for long periods. In this work, the bioaccumulation of trace elements is studied by relating the concentrations in leaves and roots of three plants of Mediterranean distribution (Dittrichia viscosa, Cistus salviifolius, Euphorbia pithyusa subsp. cupanii) with the concentrations of trace elements in contaminated and uncontaminated soils. Furthermore, in the case of D. viscosa, to know the concentration of each element by biomass, the pool of trace elements was determined both in the aerial part and in the roots. The bioaccumulation factor was not high enough in any of the species studied to be considered as phytoextractors. However, species like the ones studied in this work that live on soils with a wide range of concentration of trace elements and that develop a considerable biomass could be considered for stabilization of contaminated soils. The plant species studied in this work are good candidates for gentle-remediation options in the polluted Mediterranean.


Oecologia ◽  
2015 ◽  
Vol 180 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Tim Engelkes ◽  
Annelein Meisner ◽  
Elly Morriën ◽  
Olga Kostenko ◽  
Wim H. Van der Putten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document