accumulation capacity
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 4)

Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Mirel Subašić ◽  
Dunja Šamec ◽  
Alisa Selović ◽  
Erna Karalija

Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.


2021 ◽  
Vol 59 ◽  
pp. 102465
Author(s):  
Regis Le-Feuvre ◽  
Priscila Moraga-Suazo ◽  
Javiera González-Durán ◽  
Sergio San Martin ◽  
Alvaro Valdevenito ◽  
...  

2021 ◽  
Author(s):  
Dorian Gabriel Neidoni ◽  
◽  
Valeria Nicorescu ◽  
Sorina Claudia Negrea ◽  
Lidia Ani Diaconu ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chen Zhang ◽  
Zhejie Chen ◽  
Yanan He ◽  
Jing Xian ◽  
Ruifeng Luo ◽  
...  

Abstract Background The oral colon-targeting drug delivery vehicle is vital for the efficient application of curcumin (Cur) in ulcerative colitis (UC) treatment because of its lipophilicity and instability in the gastrointestinal tract. Methods The core–shell microparticle (MP) system composed of eco-friendly materials, zein and shellac, was fabricated using a coaxial electrospray technique. In this manner, Cur was loaded in the zein core, with shellac shell coating on it. The colon-targeting efficiency and accumulation capacity of shellac@Cur/zein MPs were evaluated using a fluorescence imaging test. The treatment effects of free Cur, Cur/zein MPs, and shellac@Cur/zein MPs in acute experimental colitis were compared. Results With the process parameters optimized, shellac@Cur/zein MPs were facilely fabricated with a stable cone-jet mode, exhibiting standard spherical shape, uniform size distribution (2.84 ± 0.15 µm), and high encapsulation efficiency (95.97% ± 3.51%). Particularly, with the protection of shellac@zein MPs, Cur exhibited sustained drug release in the simulated gastrointestinal tract. Additionally, the in vivo fluorescence imaging test indicated that the cargo loaded in shellac@zein MPs improves the colon-targeting efficiency and accumulation capacity at the colonitis site. More importantly, compared with either free Cur or Cur/zein MPs, the continuous oral administration of shellac@Cur/zein MPs for a week could efficiently inhibit inflammation in acute experimental colitis. Conclusion The shellac@Cur/zein MPs would act as an effective oral drug delivery system for UC management.


2021 ◽  
Author(s):  
Yini Cao ◽  
Chuanxin Ma ◽  
Jie Chen ◽  
Jiang Xiao ◽  
Jiuxi Shi ◽  
...  

Abstract Flooding can adversely worsen the metal contaminated soil and plant growth thus, it is crucial to explore the ecophysiological responses of plants upon co-exposure to heavy metals and flooding. Here, the plant growth, photosynthesis, and nutrient elements composition in arbor willow (Salix jiangsuensis ‘J172’) and shrub willow (Salix integra ‘Yizhibi’) were studied using a pot experiment with Cu contaminated soil (239.51 mg∙kg-1) under flooded versus non flooded condition. Salix integra showed larger BCFs than Salix jiangsuensis in both treatments, soil flooding significantly decreased the Cu contents and BCF while obviously increased TF values in both willow species (p < 0.05). Soil flooding markedly enhanced the leaf C:P and N:P ratios, while significantly decreased root C:P and N:P ratios, as compared to non flooded condition. The shrub willow exhibited better tolerance to soil flooding with little alteration in biomass and photosynthetic rate, and showed greater potential of Cu accumulation capacity, even though its total biomass was significantly lower than arbor willow. Our study also helps further understanding the nutrient balance and stoichiometry of willows in Cu contaminated soil and their response to soil flooding, helping the management of Cu-contaminated flooded soils.


2021 ◽  
Vol 15 (1) ◽  
pp. 85-90
Author(s):  
Róbert Vass ◽  
Zoltán Túri

Floods slowing down due to the significant decrease of the gradient have considerable sediment accumulation capacity in the floodplain. The grade of accumulation is further increased if the width of the floodplain is not uniform as water flowing out of the narrow sections diverge and its speed is decreased. Surface roughness in a study area of 492 hectares in the Upper Tisza region was analysed based on CIR (color-infrared) orthophotos from 2007. An NDVI index layer was created first on which object-based image segmentation and threshold-based image classification were performed. The study area is dominated by land cover / land use types (grassland-shrubs, forest) with high roughness values. It was concluded that vegetation activity based analyses on their own are not enough for determining floodplain roughness.


2021 ◽  
Vol 13 (12) ◽  
pp. 6555
Author(s):  
Jesús D. Peco ◽  
Pablo Higueras ◽  
Juan A. Campos ◽  
José M. Esbrí ◽  
Marta M. Moreno ◽  
...  

Abandoned mine lands (AMLs), which are considered some of the most dangerous anthropogenic activities in the world, are a source of hazards relating to potentially toxic elements (PTEs). Traditional reclamation techniques, which are expensive, time-consuming and not well accepted by the general public, cannot be used on a large scale. However, plant-based techniques have gained acceptance as an environmentally friendly alternative over the last 20 years. Plants can be used in AMLs for PTE phytoextraction, phytostabilization, and phytovolatilization. We reviewed these phytoremediation techniques, paying particular attention to the selection of appropriate plants in each case. In order to assess the suitability of plants for phytoremediation purposes, the accumulation capacity and tolerance mechanisms of PTEs was described. We also compiled a collection of interesting actual examples of AML phytoremediation. On-site studies have shown positive results in terms of soil quality improvement, reduced PTE bioavailability, and increased biodiversity. However, phytoremediation strategies need to better characterize potential plant candidates in order to improve PTE extraction and to reduce the negative impact on AMLs.


Sign in / Sign up

Export Citation Format

Share Document