scholarly journals Post-burning responses by vegetation on blanket bog peatland sites on a Scottish grouse moor

2021 ◽  
Vol 123 ◽  
pp. 107336
Author(s):  
Sian Whitehead ◽  
Hannah Weald ◽  
David Baines
Keyword(s):  
2021 ◽  
Author(s):  
Paul P. J. Gaffney ◽  
Mark H. Hancock ◽  
Mark A. Taggart ◽  
Roxane Andersen

AbstractThe restoration of drained afforested peatlands, through drain blocking and tree removal, is increasing in response to peatland restoration targets and policy incentives. In the short term, these intensive restoration operations may affect receiving watercourses and the biota that depend upon them. This study assessed the immediate effect of ‘forest-to-bog’ restoration by measuring stream and river water quality for a 15 month period pre- and post-restoration, in the Flow Country peatlands of northern Scotland. We found that the chemistry of streams draining restoration areas differed from that of control streams following restoration, with phosphate concentrations significantly higher (1.7–6.2 fold, mean 4.4) in restoration streams compared to the pre-restoration period. This led to a decrease in the pass rate (from 100 to 75%) for the target “good” quality threshold (based on EU Water Framework Directive guidelines) in rivers in this immediate post-restoration period, when compared to unaffected river baseline sites (which fell from 100 to 90% post-restoration). While overall increases in turbidity, dissolved organic carbon, iron, potassium and manganese were not significant post-restoration, they exhibited an exaggerated seasonal cycle, peaking in summer months in restoration streams. We attribute these relatively limited, minor short-term impacts to the fact that relatively small percentages of the catchment area (3–23%), in our study catchments were felled, and that drain blocking and silt traps, put in place as part of restoration management, were likely effective in mitigating negative effects. Looking ahead, we suggest that future research should investigate longer term water quality effects and compare different ways of potentially controlling nutrient release.


Ecosystems ◽  
2007 ◽  
Vol 10 (6) ◽  
pp. 890-905 ◽  
Author(s):  
Anna Laine ◽  
Kenneth A. Byrne ◽  
Gerard Kiely ◽  
Eeva-Stiina Tuittila
Keyword(s):  

2021 ◽  
Author(s):  
William Burn ◽  
Andreas Heinemeyer ◽  
Thorunn Helgason ◽  
David Glaves ◽  
Michael Morecroft

<p>Peatlands are globally valued for the ecosystem services they deliver, including water quality regulation and carbon sequestration. In the UK, blanket bogs are the main peatland habitat and previous work has linked blanket bog management, especially rotational burning of heather vegetation on grousemoors, to impacts on these ecosystem services. However, we still lack a mechanistic, process-level understanding of how peatland management and habitat status is linked to ecosystem service provision, which is mostly driven by soil microbial processes.</p><p>Here we examine bacterial and fungal communities across a spectrum of “intact” to degraded UK blanket bogs and under different vegetation management strategies. Sites included grousemoors under burnt and alternative mown or uncut management along with further locations including 'near intact', degraded and restored sites across a UK climatic gradient ranging from Exmoor (South UK), the Peak District (Mid) to the Flow Country (North). Moreover, an experiment was setup at the University of York with peat mesocosms taken from all sites and management/habitat conditions to allow a comparison between field and controlled conditions and assessing root-mediated processes. Using a structural equation model, we linked grousemoor management to specific fungal/bacterial functional groups, and have started to relate this to changes in water quality provision and carbon cycle aspects. This represents a significant step in the effort to use microbial communities as indicators of peatland habitat condition in UK upland blanket bogs. </p><p> </p>


2021 ◽  
Author(s):  
John Connolly ◽  
Eoghan Holohan ◽  
Mary Bourke ◽  
Charmaine Cruz ◽  
Catherine Farrell ◽  
...  

<p>Mass movements in peatlands are poorly understood. This is because of the unusual geotechnical properties of the materials (organic soils) and a paucity of well-constrained case studies. At the end of June 2020, a large peat slide occurred on Shass mountain, several kilometres northeast of the village of Drumkeeran in Co. Leitrim, north-western Ireland. The source area of the peat slide is an area of blanket bog within a Special Area of Conservation (SAC). This area is characterised by a topographic slope of 3-5°. On recently published Landslide Susceptibility Maps it was classified as ‘moderately low’ to ‘low’.</p><p>To understand this peat slide’s genesis and impact on the landscape, post-slide site investigations and aerial surveys were undertaken in the following days and weeks. These included: photogrammetry and LiDAR surveys via UAVs and crewed aircraft; Ground Penetrating Radar (GPR) profiling; in-situ peat depth measurements, soil coring and a vegetation survey.  These data were complemented by pre-and post-slide radar satellite data (Sentinel-1) and were compared to high-resolution pre-slide aerial imagery and digital surface models (DSMs) captured in August 2017 and April 2020.</p><p>Mapping and DSM differencing show a source area of 7 ha, from which ~ 171,000 m<sup>3</sup> of peat flowed 6.6 km down a river channel. The height/run-out ratio was 0.035; the run-out/volume ratio was 0.038. Peak flow or run-up heights near the source area were >4 m. Video, field and satellite evidence indicates that the peat was highly liquified. It deposited in three zones: upstream of a small bridge, which acted as a partial dam and on two floodplain areas. About 45 ha were covered with peat up to 1-3 m thick, these deposits generally thin downstream. Radar intensity data support local accounts that most of this material failed retrogressively and redeposited within 24 hours.</p><p>Data from the nearest meteorological station, 27 km to the west, show that the region experienced a relatively dry period (118 mm of precipitation) in the 2.5 months before the landslide, and a period of exceptionally high rainfall (53 mm) three days immediately beforehand. Flow pathway analysis indicates a natural drainage convergence in the upper catchment. The landslide possibly started here and regressed upslope into ~5 ha of well-drained bog, afforested in 1996, located at the head of the catchment. The areas to the south and east comprise of a mosaic flushes, wet heath, and blanket bog vegetation.</p><p>The peat depth was assessed by both GPR data (calibrated by coring), which shows the base of the peat and probing. It ranged from 2-5 m. This accords with a typical 2-4 m thickness of failed peat from DSM differencing. Coring also revealed a ~50cm thick layer clay at the base of the peat. These preliminary results highlight the potential importance of local drainage patterns and localised clay layers in increasing peat-slide susceptibility on low-angle slopes. This characterization underpins further investigation into the multifarious factors causing peat slides, which may be exacerbated by climate change.</p>


Ecohydrology ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. e1898 ◽  
Author(s):  
Nuria Prat-Guitart ◽  
Claire M. Belcher ◽  
Dan K. Thompson ◽  
Paul Burns ◽  
Jon M. Yearsley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document