Modeling residence time with a three-dimensional hydrodynamic model: Linkage with chlorophyll a in a subtropical estuary

2013 ◽  
Vol 268 ◽  
pp. 93-102 ◽  
Author(s):  
Yongshan Wan ◽  
Chelsea Qiu ◽  
Peter Doering ◽  
Mayra Ashton ◽  
Detong Sun ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 2003
Author(s):  
Daeyong Jin ◽  
Eojin Lee ◽  
Kyonghwan Kwon ◽  
Taeyun Kim

In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


2009 ◽  
Vol 8 (4) ◽  
pp. 338-342 ◽  
Author(s):  
Zhu Gao ◽  
Xing Li ◽  
Hong-wu Tang ◽  
Zheng-hua Gu

Author(s):  
Dominique Bonneau ◽  
Aurelian Fatu ◽  
Dominique Souchet

Author(s):  
Behnam Zamani ◽  
Manfred Koch ◽  
Ben R. Hodges

In this study, effects of basin morphology are shown to affect density current hydrodynamics of a large reservoir using a three-dimensional (3D) hydrodynamic model that is validated (but not calibrated) with in situ observational data. The AEM3D hydrodynamic model was applied for 5-month simulations during winter and spring flooding for the Maroon reservoir in southwest Iran, where available observations indicated that large-scale density currents had previously occurred. The model results were validated with near-bottom water temperature measurements that were previously collected at five locations in the reservoir. The Maroon reservoir consists of upper and lower basins that are connected by a deep and narrow canyon. Analyses of simulations show that the canyon strongly affects density current propagation and the resulting differing limnological characteristics of the two basins. The evolution of the Wedderburn Number, Lake Number, and Schmidt stability number are shown to be different in the two basins, and the difference is attributable to the morphological separation by the canyon. Investigation of the background potential energy (BPE) changes along the length of the canyon indicated that a density front passes through the upper section of the canyon but is smoothed into simple filling of the lower basin. The separable dynamics of the basins has implications for the complexity of models needed for representing both water quality and sedimentation.


2011 ◽  
Vol 71-78 ◽  
pp. 2169-2172 ◽  
Author(s):  
Zhi Gang Liu ◽  
Wei Shi ◽  
Yan Sheng Li ◽  
Shao Min Zhu

The removal of phenol wastewater was experimentally investigated using a three-dimensional electrode reactor with granular activated carbon and titanium filter electrode arrays. The effects of the electric current, the residence time and the initial concentration on the phenol removal were evaluated. For the initial concentration of 490 mg/L, the phenol removal was obtained as 90% under the conditions of electric current 2 A, residence time 40 min. The effluent path of the electrochemical cell was optimized, using the anode effluent instead of the top effluent, where the phenol and COD removal was both increased to 95% and the corresponding energy consumption was decreased from 9.66 to 7.63 kWh/kg COD.


Sign in / Sign up

Export Citation Format

Share Document