phenol wastewater
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 0)

ACS Omega ◽  
2021 ◽  
Author(s):  
Shanshan Zhang ◽  
Lilong Zhou ◽  
Zhengjie Li ◽  
Ali Asghar Esmailpour ◽  
Kunjie Li ◽  
...  


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2218
Author(s):  
Binbin Wu ◽  
Yikai Sun ◽  
Qiujin Fan ◽  
Jiahui Chen ◽  
Weizheng Fang ◽  
...  

In this report, phthalocyanine (Pc)/reduced graphene (rG)/bacterial cellulose (BC) ternary nanocomposite, Pc-rGBC, was developed through the immobilization of Pc onto a reduced graphene–bacterial cellulose (rGBC) nanohybrid after the reduction of biosynthesized graphene oxide-bacterial cellulose (GOBC) with N2H4. Field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FT-IR) were employed to monitor all of the functionalization processes. The Pc-rGBC nanocomposite was applied for the treatment of phenol wastewater. Thanks to the synergistic effect of BC and rG, Pc-rGBC had good adsorption capacity to phenol molecules, and the equilibrium adsorption data fitted well with the Freundlich model. When H2O2 was presented as an oxidant, phenol could rapidly be catalytically decomposed by the Pc-rGBC nanocomposite; the phenol degradation ratio was more than 90% within 90 min of catalytic oxidation, and the recycling experiment showed that the Pc-rGBC nanocomposite had excellent recycling performance in the consecutive treatment of phenol wastewater. The HPLC result showed that several organic acids, such as oxalic acid, maleic acid, fumaric acid, glutaric acid, and adipic acid, were formed during the reaction. The chemical oxygen demand (COD) result indicated that the formed organic acids could be further mineralized to CO2 and H2O, and the mineralization ratio was more than 80% when the catalytic reaction time was prolonged to 4 h. This work is of vital importance, in terms of both academic research and industrial practice, to the design of Pc-based functional materials and their application in environmental purification.



2021 ◽  
Vol 407 ◽  
pp. 124828
Author(s):  
Qianzhi Zeng ◽  
Jin Xu ◽  
Yuan Hou ◽  
Hongxin Li ◽  
Cong Du ◽  
...  




2020 ◽  
Vol 10 (20) ◽  
pp. 7329
Author(s):  
Srikanth Vuppala ◽  
Marco Stoller

In this study, a synthetic phenol solution of water and raw olive mill wastewater (OMW) were considered to achieve purification of the aqueous streams from pollutants. Only OMW was initially submitted to a coagulation/flocculation process, to reduce the turbidity, phenols, and chemical oxygen demand (COD). This first treatment appeared to be mandatory in order to remove solids from wastewater, allowing the successive use of laboratory-made core-shell nanocomposites. In detail, the optimal coagulant concentration, i.e., chitosan, was 500 mg/L, allowing a reduction of the turbidity and the COD value by 90% and 33%, respectively. After this, phenol wastewater was tested for photocatalysis and then OMW was treated by employing the laboratory-made nanocomposites in a photoreactor equipped with visible light sources and using optimal catalyst concentrations, which allowed for an additional 45% reduction of the COD of the OMW. In addition to this, the effect of the operating temperature was investigated on the photocatalytic process, and suitable kinetic models proposed.





Archaea ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunhua He ◽  
Chuanhe Yang ◽  
Shoujun Yuan ◽  
Zhenhu Hu ◽  
Wei Wang

Anaerobic ceramic membrane bioreactor (AnCMBR) is an attractive alternative for the treatment of high-strength phenol wastewater, but the effects of sludge retention time (SRT) on the performance and membrane fouling are still unclear. The results indicated that the AnCMBR was successfully employed to treat high-strength wastewater containing 5 g phenol L-1. The removal efficiencies of phenol and chemical oxygen demand (COD) reached over 99.5% and 99%, respectively, with long SRT and short SRT. SRT had no obvious effect on the performance of the AnCMBR treating high-strength phenol wastewater with long time operation. The strong performance robustness of AnCMBR benefited from the enrichment of hydrogenotrophic methanogens and syntrophic phenol-degrading bacteria. However, the decline of SRT led to a more severe membrane fouling in the AnCMBR, which was caused by the small size of sludge flocs and high concentration of protein in the biopolymers. Therefore, this work presented a comprehensive insight to the feasibility and robustness of the AnCMBR for treating high-strength phenol wastewater.



2020 ◽  
Vol 31 (16) ◽  
pp. 13511-13520
Author(s):  
Jiaxin Xu ◽  
Xiaoping Liang ◽  
Xiaowei Fan ◽  
Yuxi Song ◽  
Zenghua Zhao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document