Projecting complex interactions between forest harvest and succession in the northern Acadian Forest Region

2021 ◽  
Vol 456 ◽  
pp. 109657
Author(s):  
Erin Simons-Legaard ◽  
Kasey Legaard ◽  
Aaron Weiskittel
Author(s):  
Alex Noel ◽  
Jules Comeau ◽  
Salah-Eddine El Adlouni ◽  
Gaetan Pelletier ◽  
Marie-Andrée Giroux

The recruitment of saplings in forest stands into merchantable stems is a very complex process, thus making it challenging to understand and predict. The recruitment dynamics in the Acadian Forest Region of New Brunswick are not well known or documented. Our objective was to draw an inference from existing large scale routine forest inventories as to the different dynamics behind the recruitment from the sapling layer into the commercial tree size layer in terms of density and occurrence of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) following harvesting, by looking at many factors on a wide range of spatial and temporal scales using models. Results suggest that the variation in density and probability of occurrence is best explained by the intensity of silvicultural treatment, by the merchantable stem density in each plot, and by the proportion of merchantable basal area of each group of species. The number of recruits of sugar maple and yellow birch stems tend be higher when time since last treatment increases, when mid to low levels of silvicultural treatment intensity were implemented, and within plots having intermediate levels of merchantable stem density. Lastly, our modeling efforts suggest that the probability of occurrence and density of recruitment of both species tend to increase while its share of merchantable basal area increases.


2003 ◽  
Vol 11 (S1) ◽  
pp. S47-S77 ◽  
Author(s):  
A Mosseler ◽  
J A Lynds ◽  
J E Major

2002 ◽  
Vol 50 (4) ◽  
pp. 790-795 ◽  
Author(s):  
Dean G. Thompson ◽  
Brenda J. Harris ◽  
Leonard J. Lanteigne ◽  
Teresa M. Buscarini ◽  
Derek T. Chartrand

2011 ◽  
Vol 41 (10) ◽  
pp. 2077-2089 ◽  
Author(s):  
Rongxia Li ◽  
Aaron R. Weiskittel ◽  
John A. Kershaw

Forest tree ingrowth is a highly variable and largely stochastic process. Consequently, predicting occurrence, frequency, and composition of ingrowth is a challenging task but of great importance in long-term forest growth and yield model projections. However, ingrowth data often require different statistical techniques other than traditional Gaussian regression, because these data are often bounded, skewed, and non-normal and commonly contain a large fraction of zeros. This study presents a set of regression models based on discrete Poisson and negative binomial probability distributions for ingrowth data collected from permanent sample plots in the Acadian Forest Region of North America. Models considered here include regular Poisson, zero-inflated Poisson (ZIP), zero-altered Poisson (ZAP; hurdle Poisson), regular negative binomial (NB), zero-inflated negative binomial (ZINB), and zero-altered negative binomial (ZANB; hurdle NB). Plot-level random effects were incorporated into each of these models. The ZINB model with random effects was found to provide the best fit statistics for modeling annualized occurrence and frequency of ingrowth. The key explanatory variables were stand basal area per hectare, percentage of hardwood basal area, number of trees per hectare, a measure of site quality, and the minimum measured diameter at breast height of each plot. A similar model was developed to predict species composition. All models showed logical behavior despite the high variability observed in the original data.


2003 ◽  
Vol 79 (3) ◽  
pp. 462-474 ◽  
Author(s):  
J. Loo ◽  
N. Ives

The Acadian Forest Region comprises the three Maritime Provinces of Canada, each of which has a distinct history resulting in different patterns of land ownership, land use, and impacts on the forest. The region encompasses a high degree of physiographic and biological diversity, being situated where the warm, moist influence of the Gulf Stream from the south collides with the cold Labrador Current and the boreal forest gradually gives way to mostly deciduous forest. Natural forest types in the Acadian Forest Region include rich tolerant hardwood, similar to the deciduous forests to the south; spruce-fir forest, similar to boreal forest to the north; and an array of coniferous, deciduous, and mixed intermediate types. Red spruce (Picea rubens Sarg.), yellow birch (Betula alleghaniensis Britt.), sugar maple (Acer saccharum Marsh.) and balsam fir (Abies balsamea (L.) Mill.) are considered characteristic of the Acadian Forest Region. Except for one quantitative study in one county of New Brunswick, and another study on Prince Edward Island, most knowledge of the historical forest condition has been gleaned from early descriptions by explorers, surveyors, and settlers of the Maritimes region. Although some regions have been affected much more than others, little, if any forested area has escaped human influence over the past four centuries. A general result of human activities has been a shift in successional status and age distribution, with increased frequency of relatively young, often even-aged, early successional forest types including balsam fir, white spruce (Picea glauca (Moench) Voss), red maple (Acer rubrum L.), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.). Both the abundance and age of late-successional species such as sugar maple, red spruce, eastern hemlock (Tsuga canadensis L. Carrière), yellow birch, cedar (Thuja occidentalis L.), and beech (Fagus grandifolia Ehrh.) have declined. Key words: pre-European forest, Maritime Provinces, historical ecology, witness trees, Acadian forest types, natural disturbance


2017 ◽  
Vol 405 ◽  
pp. 284-294 ◽  
Author(s):  
Anthony R. Taylor ◽  
Yan Boulanger ◽  
David T. Price ◽  
Dominic Cyr ◽  
Elizabeth McGarrigle ◽  
...  

Author(s):  
William Robert Vaughn ◽  
Anthony R. Taylor ◽  
David A. MacLean ◽  
Loïc D'Orangeville ◽  
Michael B. Lavigne

In this study, we conducted a controlled experiment to assess the growth and survival of balsam fir (Abies balsamea (L.) Mill.), red spruce (Picea rubens Sarg.), and red maple (Acer rubrum L.) seedlings in response to warming, drought, and elevated CO2, as projected under RCP 8.5 for North America’s Acadian Forest Region. In response to warming, only red spruce increased in height; however, this effect varied by CO2 and soil moisture treatments. Under the drought treatment, red spruce biomass was not affected, but mortality increased by two percent. With warming, increases in balsam fir height growth were only detected under certain soil moisture and CO2 conditions. Balsam fir biomass decreased by 24% under drought, while mortality increased by 5 percent. Warming did not improve red maple height growth, but it remained 7-50 times greater than that of the conifers and no mortality was observed. Overall, CO2 enrichment increased height growth of droughted seedlings relative to the ambient treatment, demonstrating an amelioration of the negative drought effect. Balsam fir was the least adapted to warming and drought, while red spruce displayed some positive responses. Although growth of red maple seedlings did not increase with warming, they exhibited greater absolute growth and survival, which suggests red maple may outperform both conifers under a warming climate.


Sign in / Sign up

Export Citation Format

Share Document