scholarly journals Optimizing CO2 Storage in a Deep Saline Aquifer with the Capacitance-resistance Model

2013 ◽  
Vol 37 ◽  
pp. 3919-3926 ◽  
Author(s):  
Qing Tao ◽  
Steven L. Bryant
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3397
Author(s):  
Danqing Liu ◽  
Yilian Li ◽  
Ramesh Agarwal

As a new “sink” of CO2 permanent storage, the depleted shale reservoir is very promising compared to the deep saline aquifer. To provide a greater understanding of the benefits of CO2 storage in a shale reservoir, a comparative study is conducted by establishing the full-mechanism model, including the hydrodynamic trapping, adsorption trapping, residual trapping, solubility trapping as well as the mineral trapping corresponding to the typical shale and deep saline aquifer parameters from the Ordos basin in China. The results show that CO2 storage in the depleted shale reservoir has merits in storage safety by trapping more CO2 in stable immobile phase due to adsorption and having gentler and ephemeral pressure perturbation responding to CO2 injection. The effect of various CO2 injection schemes, namely the high-speed continuous injection, low-speed continuous injection, huff-n-puff injection and water alternative injection, on the phase transformation of CO2 in a shale reservoir and CO2-injection-induced perturbations in formation pressure are also examined. With the aim of increasing the fraction of immobile CO2 while maintaining a safe pressure-perturbation, it is shown that an intermittent injection procedure with multiple slugs of hug-n-puff injection can be employed and within the allowable range of pressure increase, and the CO2 injection rate can be maximized to increase the CO2 storage capacity and security in shale reservoir.


2013 ◽  
Vol 37 ◽  
pp. 4445-4456 ◽  
Author(s):  
Sarah Bouquet ◽  
Dominique Bruel ◽  
Chantal de Fouquet

Author(s):  
Sylvain Thibeau ◽  
Lesley Seldon ◽  
Franco Masserano ◽  
Jacobo Canal Vila ◽  
Philip Ringrose

Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2017 ◽  
Vol 57 (1) ◽  
pp. 100 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer

CO2 migration and storage capacity are highly affected by various parameters (e.g. reservoir temperature, vertical to horizontal permeability ratio, cap rock properties, aquifer depth and the reservoir heterogeneity). One of these parameters, which has received little attention, is brine salinity. Although brine salinity has been well demonstrated previously as a factor affecting rock wettability (i.e. higher brine salinity leads to more CO2-wet rocks), its effect on the CO2 storage process has not been addressed effectively. Thus, we developed a three-dimensional homogeneous reservoir model to simulate the behaviour of a CO2 plume in a deep saline aquifer using five different salinities (ranging from 2000 to 200 000 ppm) and have predicted associated CO2 migration patterns and trapping capacities. CO2 was injected at a depth of 1408 m for a period of 1 year at a rate of 1 Mt year–1 and then stored for the next 100 years. The results clearly indicate that 100 years after the injection of CO2 has stopped, the salinity has a significant effect on the CO2 migration distance and the amount of mobile, residual and dissolved CO2. First, the results show that higher brine salinity leads to an increase in CO2 mobility and CO2 migration distance, but reduces the amount of residually trapped CO2. Furthermore, high brine salinity leads to reduced dissolution trapping. Thus, we conclude that less-saline aquifers are preferable CO2 sinks.


Sign in / Sign up

Export Citation Format

Share Document