scholarly journals Optimization of Solar Energy Potential for Buildings in Urban Areas – A Norwegian Case Study

2014 ◽  
Vol 58 ◽  
pp. 166-171 ◽  
Author(s):  
Clara Stina Good ◽  
Gabriele Lobaccaro ◽  
Siri Hårklau
2021 ◽  
Author(s):  
David Forgione

Determining the solar energy potential on a surface depends on geographical location, prevailing meteorological conditions, size, shape and orientation of a surface. In urban areas shading is an important parameter, given the density of buildings and must be considered in an evaluation of available irradiation. This thesis develops an integrated workflow for modelling and mapping solar energy potentials in urban areas. This was accomplished through a case study of a typical large urban centre - The City of Toronto, using 3-D building models and selected software tools. The developed workflow was applied and successfully modelled the solar energy potential of buildings in the selected case study area. The results allowed for further characterization of the main factors affecting solar energy potentials on building surfaces in urban areas. This preliminary study indicates that, in comparison to HVAC systems and green roofs, shading may be a less important factor to consider when estimating solar energy potentials in some urban settings.


2021 ◽  
Author(s):  
David Forgione

Determining the solar energy potential on a surface depends on geographical location, prevailing meteorological conditions, size, shape and orientation of a surface. In urban areas shading is an important parameter, given the density of buildings and must be considered in an evaluation of available irradiation. This thesis develops an integrated workflow for modelling and mapping solar energy potentials in urban areas. This was accomplished through a case study of a typical large urban centre - The City of Toronto, using 3-D building models and selected software tools. The developed workflow was applied and successfully modelled the solar energy potential of buildings in the selected case study area. The results allowed for further characterization of the main factors affecting solar energy potentials on building surfaces in urban areas. This preliminary study indicates that, in comparison to HVAC systems and green roofs, shading may be a less important factor to consider when estimating solar energy potentials in some urban settings.


2021 ◽  
Author(s):  
Annie Chow

<div>The aim of this research is to increase the assessment ability of solar energy utilization and planning support for clusters of different types of buildings in a mixed-use community. Particular focus will be placed on the analysis of community-based modeling, mapping and forecasting of solar potentials on the rooftops of buildings. New systems and methodologies with appropriate level of detail at a lower computational time are needed to accurately model, estimate and map solar energy potential at a high spatiotemporal resolution. To accomplish this goal and to develop an integrated solution, the assessment ability was investigated using two different types of studies: (1) 3D GIS modeling of a solar energy community, and (2) benchmarking of solar PV radiation software tools. A 3D GIS modeling and mapping approach was developed to assess community solar energy potential. A model was created in ESRI ArcGIS, to efficiently compute and iterate the hourly solar modeling and mapping process over a simulated year. The methodology was tested on a case study area located in southern Ontario, where two different 3D models of the site plan were analyzed. The accuracy of the work depended on the resolution and sky size of the input model. An assessment of solar simulation software tools was performed to evaluate their strengths and weaknesses for performing analysis in the PV modeling process. The software tools assessed were HelioScope, PVsyst, PV*SOL,</div><div>Archelios, EnergyPlus, and System Advisor Model (SAM). The performance of the software tools were assessed based upon their accuracy in simulation performance against measured data, and the comparison of their physical functions and capabilities. A case study near London, Ontario with an 8.745kWp PV system installation was selected for analysis, and EnergyPlus was found to have predictions closest to measured data, ranging from -0.6% to 3.6% accuracy. Based upon the GIS study and the evaluation of the six solar software tools, recommendations for the development of a future application to couple GIS with the internal submodels of the software tools were made to create the ideal tool for 3D modeling and mapping of solar PV potential. </div>


Author(s):  
G. Buyuksalih ◽  
S. Bayburt ◽  
A. P. Baskaraca ◽  
H. Karim ◽  
A. Abdul Rahman

Solar energy modelling is increasingly popular, important, and economic significant in solving energy crisis for big cities. It is a clean and renewable resource of energy that can be utilized to accommodate individual or group of buildings electrical power as well as for indoor heating. Implementing photovoltaic system (PV) in urban areas is one of the best options to solve power crisis over expansion of urban and the growth of population. However, as the spaces for solar panel installation in cities are getting limited nowadays, the available strategic options are only at the rooftop and façade of the building. Thus, accurate information and selecting building with the highest potential solar energy amount collected is essential in energy planning, environmental conservation, and sustainable development of the city. Estimating the solar energy/radiation from rooftop and facade are indeed having a limitation - the shadows from other neighbouring buildings. The implementation of this solar estimation project for Istanbul uses CityGML LoD2-LoD3. The model and analyses were carried out using Unity 3D Game engine with development of several customized tools and functionalities. The results show the estimation of potential solar energy received for the whole area per day, week, month and year thus decision for installing the solar panel could be made. We strongly believe the Unity game engine platform could be utilized for near future 3D mapping visualization purposes.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8576
Author(s):  
Artur Hołuj ◽  
Mateusz Ilba ◽  
Piotr Lityński ◽  
Karol Majewski ◽  
Marcin Semczuk ◽  
...  

Urban sprawl is a process that shapes contemporary urban spaces. Generally, this process is associated with negative effects due to the generation of high costs. However, not all the effects of urban sprawl should be considered in the context of the increasing costs of the use of space; some of them should be regarded as cost cutting factors, for example, the possibility of the use of roofed areas in generating energy from sunlight. Solar energy is believed to be one of the sources of clean energy that reduce pollution and greenhouse gas emissions into the atmosphere. However, solar energy generation necessitates the development of large areas for the purpose of installing photovoltaic modules and substantial funds for creating large solar farms. For this reason, a significant role in state energy policies is played by small dispersed installations mounted on the roofs of buildings. There is a gap in existing research on the assessment of urban sprawl in terms of the potential use of rooftops for solar installations in suburban areas. This research gap has not yet been filled, either conceptually and methodologically. Hence, the contribution of the research to the development of the current state of knowledge involves the identification of economic and environmental benefits of usually negatively perceived urban sprawl. The proposal of a method for the identification of suburban housing potential for solar energy generation constitutes another addition to the state of knowledge. The main objective of this article is to analyse the energy generating potential of buildings located in suburban and urban areas characterised by the confirmed occurrence of urban sprawl phenomena. CityGML data were used to conduct an analysis of the exposure of roofs to sunlight using algorithms based on vector data. The authors estimated the dynamics of changes in time and referred the existing photovoltaic installations to the total potential of a selected area. The use of the energy potential of the analysed roofs of buildings was used to evaluate the external costs and benefits of spatial planning. The discussion presented the current conditions of the energy sector and energy policies in Poland and the EU. In addition, recommendations were proposed for local spatial policies concerning the mitigation of the effects of suburbanization in the context of developing the system of PV micro-installations.


2016 ◽  
Vol 11 (1) ◽  
pp. 118-133 ◽  
Author(s):  
Rodrigo García Alvarado ◽  
Lorena Troncoso ◽  
Pablo Campos

This paper presents a method for estimating the solar capture capacity of dwellings using the central urban area of Concepción, Chile, as a case study in order to promote self-generation of energy by residents. The method takes into account the growing domestic energy demand and the possibility of meeting this demand through integrated solar energy collection into buildings using different systems. The methodology considers a study of the potential incoming solar radiation on buildings according to their geographical location and the surrounding buildings. The capacity for solar capture is then estimated for different dwelling types according to their morphology. Subsequently, the energy contribution provided by different technologies (solar thermal, photovoltaic and hybrid) is identified in relation to the main average energy demands for electricity, water and space heating. Finally, systems for each dwelling are recommended in an urban map available online. The development is based on climate information, cartography, aerial photographs, surveys, housing models, technical standards, standardised calculations and dynamic simulations, implemented according to building layouts from an online Geographic Information System (GIS). The housing types are categorised in an urban map that relates household demands and the contribution of different solar energy systems. According to the estimates calculated, the residential units in the study offer sufficient solar capacity to supply between 40 and 60% of their energy consumption, especially in detached houses using roof-mounted hybrid systems.


Sign in / Sign up

Export Citation Format

Share Document