scholarly journals Theoretical Analysis and Case Study on Solar Driven Two-stage Rotary Desiccant Cooling System Combined with Geothermal Heat Pump

2015 ◽  
Vol 70 ◽  
pp. 418-426 ◽  
Author(s):  
Yanjun Dai ◽  
Xian Li ◽  
Ruzhu Wang
2005 ◽  
Vol 128 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Onder Ozgener ◽  
Arif Hepbasli

The main objective in doing the present study is twofold, namely (i) to review briefly the utilization of geothermally heated greenhouses and geothermal heat pumps in Turkey, since the system studied utilizes both renewable energy resources and (ii) to present the Analytical Hierarchy Process (AHP) as a potential decision making method for use in a greenhouse integrated solar assisted geothermal heat pump system (GISAGHPS), which was installed in the Solar Energy Institute of Ege University, Izmir, Turkey. This investigation may also be regarded as the one of the limited studies on the application of the AHP method to GISAGHPs, as no studies on the GISAGHPS have appeared in the literature. In this context, an economic analysis is performed based on the life cycle costing technique first. The results are then evaluated by applying the AHP method to a study, which is a comparative study on the GISAGHPS and split system. The results indicated that the GISAGHPS is economically preferable to the conventional split heating/cooling system under Turkey’s conditions.


2021 ◽  
Vol 11 (22) ◽  
pp. 10778
Author(s):  
Hong-Seok Mun ◽  
Muhammad Ammar Dilawar ◽  
Dhanushka Rathnayake ◽  
Il-Byung Chung ◽  
Chong-Dae Kim ◽  
...  

This study compared the effects of the cooling mode of a geothermal heat pump (GHP) system with those of a traditional cooling system (ventilation fans) inside a pig house on the internal house temperature, harmful gas emissions, and the growth performance of the pigs. During the 19-week experimental period, the temperature inside the house connected to the GHP cooling system was significantly lower (p < 0.05) than that of a house with a conventional cooling system. Similarly, the temperature–humidity index (THI) was significantly reduced (p < 0.05) in the GHP cooling system-connected pig house. Furthermore, the concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were also decreased significantly in the GHP-installed pig house (p < 0.05). However, no differences were observed in the concentrations of particulate matter (PM2.5) and formaldehyde (p > 0.05). The pigs reared in the GHP-equipped pig house gained significantly more weight (p < 0.05) by the end of the experiment. The GHP cooling system can therefore be implemented as a renewable, environmentally friendly energy source in pig farms for sustainable swine production without adversely affecting the productivity parameters.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3776
Author(s):  
Macedon Moldovan ◽  
Bogdan-Gabriel Burduhos ◽  
Ion Visa

Romania introduced in 2018 an amendment to the national law 220/2008 by including the Prosumer concept that allows investors in grid-connected photovoltaic systems with a capacity up to 27 kWp to receive a feed in tariff for the electricity delivered to the grid representing approximatively one third of the price paid when the electricity is consumed from the grid. Thus, the challenge is to use as much as possible the photovoltaic power when it is produced. A methodology is developed to evaluate how much of the electrical energy output of a grid-connected photovoltaic platform is used by a geothermal heat pump for space heating in a building. A numerical simulation is performed in Trnsys17 based on locally measured meteorological parameters over a period of one entire year. A case study is presented for which the characteristics of the building, of the heat pump system and of the photovoltaic system are described and integrated into the transient simulation environment. The numerical results are comparatively presented and discussed along with experimental data for sunny days in cold season. For the analysed case study, the self-consumption is 16%, significantly lower than the yearly coverage degree of 70%. Further research can be done to increase the self-consumption.


2021 ◽  
Vol 10 (2) ◽  
pp. 84-100
Author(s):  
Claudia Duran De Tapia ◽  
Christofer M. Harper

Geothermal heat pump (GHP) systems are more concentrated to moderate climate regions, although the potential for GHP systems in hot and humid climates is possible as past research efforts have demonstrated this using simulations and commercial case examples. This research investigates the use of residential GHP systems for the hot and humid climate found in southern Louisiana. The authors collected field performance information, including initial system cost, and electricity consumption and costs from two residential case studies in which each case included one home with a conventional heating and cooling system and one home with a GHP system. Using a comparative analysis and analysis of variance, results illustrate that initial cost of GHP system in the first case was $13,285 more and the second case was $17,588 more than the installation costs of a conventional system. Further, the GHP system payback period depends on the whether the design uses a horizontal or vertical ground loop, and the designer and contractor’s quality and experience in performing the GHP work as the first case resulted in a payback period of 70 years while the second case had a payback period of only seven years. Findings show that when an appropriate installation occurs, GHP system can save consumption and energy costs for residential homes in hot and humid climates.


2009 ◽  
Vol 34 (12) ◽  
pp. 2898-2904 ◽  
Author(s):  
Liu Jun ◽  
Zhang Xu ◽  
Gao Jun ◽  
Yang Jie

2014 ◽  
Vol 114 ◽  
pp. 611-620 ◽  
Author(s):  
Parham Eslami-Nejad ◽  
Mohamed Ouzzane ◽  
Zine Aidoun

Sign in / Sign up

Export Citation Format

Share Document