scholarly journals Statistical Analysis of Engine System-level Factors for Palm Biodiesel Fuelled Diesel Engine Responses

2015 ◽  
Vol 75 ◽  
pp. 99-104 ◽  
Author(s):  
Jo-Han Ng ◽  
Jing Huey Khor ◽  
Kang Yao Wong ◽  
Srithar Rajoo ◽  
Cheng Tung Chong
Author(s):  
Jeevan Ghadge ◽  
Alok Krishnan ◽  
Samarth Gupta ◽  
Dhilip Balasundaram ◽  
Tim Best

Ongoing efforts to reduce CO2 and other pollutant tail pipe emissions have led to escalated demand for diesel-electric hybrid bus powertrains in Europe, similar to the trend in passenger car markets. This is fuelled by public expectations and initiatives by various European governments to reward bus fleet operators for reduced in-city emissions and noise thus improving air quality and wellbeing of the general population. This paper describes the engineering efforts that developed a Euro VI certified diesel engine system, catering for series hybrids operating under ‘charge-depleting’ as well as ‘load following’ battery management strategies. The development team delivered improved fuel economy whilst dealing with requirements around legislation, unique customer duty cycles and engine mechanical robustness. Focus was placed on capturing requirements from a diverse range of sources and harmonising them to develop a technical solution fit for purpose in day to day operation that differs from validation cycles and standard drivetrain operation. In order to deliver a field-ready solution, application specific tuning and validation processes had to be defined and developed. This was achieved through close coordination with the European bus OEMs and their chosen hybrid system suppliers. Six-sigma tools were used to highlight key expectations and drive technical solutions. At a system level the focus was on OBD reliability, exhaust after-treatment management, controls functionality, hardware durability and tail pipe emissions. Performance targets including the number of start-stops per hour, idle management and engine speed-torque ramp rates were defined. Drive cycle simulations helped define optimal engine and hybrid system operating strategies followed by physical testing to further optimise these running points. Vehicle-level validation was completed through field testing, specific European bus test cycles, as well as under exceptional scenarios encountered in real world use. This exercise was designed to find and solve interface and OBD issues. Integration challenges in the areas of engine speed-torque control, diesel particulate filter management and HVAC control were addressed. The outcome is the release of a bespoke Euro VI diesel engine package, which enabled the hybrid bus system to exceed customer expectations. This integrated system operates on a set of optimised parameters delivering efficient sub system behaviour including aftertreatment management, engine protection and operating state control. It handles the full range of real-world vehicle operation with improved fuel economy, frequent start/stop operation and enhanced driveability.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


1998 ◽  
Vol 33 (6) ◽  
pp. 448-454
Author(s):  
Fuyuki Hirata ◽  
Hideo Watanuma ◽  
Yukiko Shima ◽  
Haruo Miyano

Author(s):  
Mingxuan Shi ◽  
Konstantinos Milios ◽  
Jonathan C. Gladin ◽  
Dimitri N. Mavris
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document