scholarly journals Energy Consumption and Greenhouse Gas Emission from Ceramic Tableware Production: A Case Study in Lampang, Thailand

2015 ◽  
Vol 79 ◽  
pp. 98-102
Author(s):  
Panatda Riyakad ◽  
Siriluk Chiarakorn
2019 ◽  
Vol 142 ◽  
pp. 167-176 ◽  
Author(s):  
Jihwan Park ◽  
Insang Jung ◽  
Wonhee Choi ◽  
Sang Ok Choi ◽  
Sung Won Han

Author(s):  
Syakira Afiqah Suffian ◽  
Atiah Abdullah Sidek ◽  
Toshihiko Matsuto ◽  
Muataz Hazza Al Hazza ◽  
Hazlina Md Yusof ◽  
...  

The aim of this research was to evaluate the level of greenhouse gas emission from broiler chicken farming industry in Malaysia. In order to achieve that, Life Cycle Assessment method was chosen as a framework to complete the task. A case study was conducted at a broiler chicken farm to gather the data and information related to the broiler chicken production. Cradle-to-gate assessment including distribution stage was conducted based on the ISO14040/1044 guidelines. Inventory data for this case study was gathered in collaboration with one of the selected case study broiler chicken farm company. Greenhouse gas emission that consists of several most affected gases such as carbon dioxide, methane and nitrous oxide was studied. Result shows that the highest carbon dioxide emission came from manure, which accounted for 1,665,342 kg CO2 equivalent per total broilers while the highest methane emission came from feed, which accounted for 126,207.84 g CH4 equivalent per total broilers. For nitrous oxide emission, the highest values came from bedding which accounted for 20,316.87 g N2O equivalent per total broilers in the commercial modern broiler chicken farm. In this case study, it can be concluded that manure gives the most prominent effect to the greenhouse gas emission followed by feed and bedding materials. 


2018 ◽  
Vol 17 (3) ◽  
pp. 675-682 ◽  
Author(s):  
Jihoon Lee ◽  
Taeho Kim ◽  
Harald Ellingsen ◽  
Erik Skontorp Hognes ◽  
Bokyu Hwang

2019 ◽  
Vol 11 (2) ◽  
pp. 497 ◽  
Author(s):  
Olimpia Neagu ◽  
Mircea Teodoru

The aim of the paper is to examine the long-term relationship between economic complexity, energy consumption structure, and greenhouse gas emission, within a panel of European Union countries and two subpanels: (i) European economies with higher economic complexity and (ii) European economies with a lower level of economic complexity. Taking into consideration the heterogeneity among European countries, the heterogeneous panel technique is used, including panel estimation through fully modified least squares (FMOLS) and dynamic ordinary least squares (DOLS). The empirical findings indicate a long-term equilibrium relationship between economic complexity, energy consumption structure and greenhouse gas emission within all three panels. Economic complexity and energy consumption structure have a statistically significant impact on greenhouse gas emission within all panels, but the influence is higher within the subpanel of countries with a lower level of economic complexity, suggesting a higher risk of pollution as the economic complexity grows and as the energy balance inclines in favor of non-renewable energy consumption. Our paper suggests that the economic complexity is a variable that must be taken into consideration when national economic and energy policies are shaped. Finally, policy implications for each panel of countries are discussed.


2016 ◽  
Vol 847 ◽  
pp. 381-390 ◽  
Author(s):  
Yao Li ◽  
Xian Zheng Gong ◽  
Zhi Hong Wang ◽  
Hao Li ◽  
Miao Miao Fan

In order to determine the optimal parameters of the external insulation system and guide the energy saving and greenhouse gas emission reduction of building, a typical student dormitory building in Beijing was chosen as research object. The life cycle thinking and dynamic simulation method were used in the present investigation. The relationship between the expandable polystyrene (EPS) external insulation system design parameters and building energy consumption and greenhouse gas emission in each phase of materials production phase, operation phase and the whole life cycle was studied, systematically . The results show that the consumption of clay brick, concrete and cement mortar account for 98.1% of the total materials consumption, where concrete contributes most to both energy consumption (36.6%) and greenhouse gas emission (35.9%). Regarding the contribution to energy consumption and greenhouse gas emission for building life cycle, materials production phase accounts for 5.6%-18.8% and building operation phase takes up 80.6%-93.4%. With the increase of EPS insulation thickness, the energy consumption and greenhouse gas emission increase linearly in materials production phase, decrease in building operation phase, and have an optimization value in the building life cycle to reach the minimum when the heat transfer coefficient (K) is 0.3W / (m2 • K) equivalent to the EPS insulation thickness is 130mm. Building heating load reduces with the increases of insulation thickness, but the envelope thermal insulation performance has no significant influence on cooling load.


Sign in / Sign up

Export Citation Format

Share Document