scholarly journals Influence of Rock Wettability on CO2 Migration and Storage Capacity in Deep Saline Aquifers

2017 ◽  
Vol 114 ◽  
pp. 4357-4365 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer
Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
Mark Wilkinson ◽  
Debbie Polson

Abstract. Carbon capture and storage (CCS) is a potentially important technology for the mitigation of industrial CO2 emissions. However, the majority of the subsurface storage capacity is in saline aquifers, for which there is relatively little information. Published estimates of the potential storage capacity of such formations, based on limited data, often give no indication of the uncertainty, despite there being substantial uncertainty associated with the data used to calculate such estimates. Here, we test the hypothesis that the uncertainty in such estimates is a significant proportion of the estimated storage capacity, and should hence be evaluated as a part of any assessment. Using only publicly available data, a group of 13 experts independently estimated the storage capacity of seven regional saline aquifers. The experts produced a wide range of estimates for each aquifer due to a combination of using different published values for some variables and differences in their judgements of the aquifer properties such as area and thickness. The range of storage estimates produced by the experts shows that there is significant uncertainty in such estimates; in particular, the experts' range does not capture the highest possible capacity estimates. This means that by not accounting for uncertainty, such regional estimates may underestimate the true storage capacity. The result is applicable to single values of storage capacity of regional potential but not to detailed studies of a single storage site.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 3942-3951
Author(s):  
Tsai-Hsing Martin Ho ◽  
Junyi Yang ◽  
Peichun Amy Tsai

Carbon capture and storage in deep saline aquifers is a promising technology to mitigate anthropologically emitted CO2. Our high-pressure microfluidics can help assess the relevant time-scale and CO2 mass transfer in different reservoir conditions.


Sign in / Sign up

Export Citation Format

Share Document