scholarly journals Availability of a Simplified Coarse Grid Model for History Matching at the Nagaoka Post-injection CO2 Monitoring Site

2017 ◽  
Vol 114 ◽  
pp. 5007-5014 ◽  
Author(s):  
Saeko Mito ◽  
Ziqiu Xue
2021 ◽  
Author(s):  
Dachang Li ◽  
Corneliu-Liviu Ionescu ◽  
Baurzhan Muftakhidinov ◽  
Byron Haynes ◽  
Bakyt Yergaliyeva

Abstract Running a fine grid model with 107 - 109 of cells is possible using a supercomputer with 103 - 106 of CPUs but may not be always cost-effective. The most cost-effective way is to use a coarse grid model that is much smaller but with static/dynamic profiles very close to the fine grid model. This paper proposes a new layer optimization and upscaling method with the aim for creating a consistent coarse grid model. Unlike the industry's existing layer optimization and upscaling methods, the proposed method performs layer optimization and upscaling fully integrated with the Lorenz coefficient and curves (LCC). Coarse grid layers and their permeabilities are created by minimizing the difference between fine and coarse grid LCCs. The process consists of static and dynamic optimizations. The former is measured by LCC while the latter by pressure, GOR, and water-cut. A new LCC-based permeability upscaling method is developed to preserve the fine grid multiphase flow behaviors. A satisfactory coarse grid model is achieved when both static and dynamic criteria are met. The proposed method has been successfully applied to a giant carbonate oil field in the Caspian Sea that consists of a matrix dominated platform and a fracture/karst dominated rim. Due to the field's complex geology and high H2S content (15%), a dual porosity, dual permeability compositional model has been created to model compositional sour crude flow within and between the matrix and fracture/karst features. The reservoir drive mechanisms are fluid expansion, miscible gas injection and aquifer drive. The reservoir is undersaturated and has an abnormally high initial reservoir pressure. The fine-grid static model contains 104 million cells (370×225×625×2) and the optimized upscaled coarse-grid dynamic model has 8.3 million cells (370×225×50×2). The upscaled model can be run efficiently on the company's existing HPC infrastructure with a maximum of 64 CPUs. Excellent matches of the Lorenz coefficient maps for reservoir total/zones and Lorenz curves at all wells between the fine and coarse grid models have been achieved. Matches on the dynamic variables, e.g., pressure, gas breakthrough time, and GOR growth, in all producers are within the defined acceptable tolerances. The high quality of the static and dynamic matches between the coarse- and fine-grid models confirms that the reservoir properties of the coarse-grid model is very close to the fine-grid model and can be used a base model for history matching and uncertainty analysis.


2009 ◽  
Vol 9 (11) ◽  
pp. 3825-3839 ◽  
Author(s):  
D. Chen ◽  
Y. Wang ◽  
M. B. McElroy ◽  
K. He ◽  
R. M. Yantosca ◽  
...  

Abstract. An updated version of the nested-grid GEOS-Chem model is developed allowing for higher horizontal (0.5°×0.667°) resolution as compared to global models. CO transport over a heavily polluted region, the Beijing-Tianjin-Hebei (BTH) city cluster in China, and the pattern of outflow from East China in summertime are investigated. Comparison of the nested-grid with global models indicates that the fine-resolution nested-grid model is capable of resolving individual cities with high associated emission intensities. The nested-grid model indicates the presence of a high CO column density over the Sichuan Basin in summer, attributable to the low-level stationary vortex associated with the Basin's topographical features. The nested-grid model provides good agreement also with measurements from a suburban monitoring site in Beijing during summer 2005. Tagged CO simulation results suggest that regional emissions make significant contributions to elevated CO levels over Beijing on polluted days and that the southeastward moving cyclones bringing northwest winds to Beijing are the key meteorological mechanisms responsible for dispersion of pollution over Beijing in summer. Overall CO fluxes to the NW Pacific from Asia are found to decrease by a factor of 3–4 from spring to summer. Much of the seasonal change is driven by decreasing fluxes from India and Southeast Asia in summer, while fluxes from East China are only 30% lower in summer than in spring. Compared to spring, summertime outflow from Chinese source regions is strongest at higher latitudes (north of 35° N). The deeper convection in summer transporting CO to higher altitudes where export is more efficient is largely responsible for enhanced export in summer.


2001 ◽  
Author(s):  
H. Zambrano ◽  
I. Rusinek ◽  
G. Jalfin ◽  
Sheng-Tai Lee ◽  
V. Muralidharan ◽  
...  

1995 ◽  
Vol 30 (2) ◽  
pp. 205-230 ◽  
Author(s):  
Ioannis K. Tsanis ◽  
Jian Wu

Abstract A nested-grid depth-averaged circulation model was developed and applied to three nearshore areas in Hamilton Harbour: the western basin, LaSalle Park waterfront and the northeastern shoreline. The grid sizes used were 100 m for the whole harbour, and 25 m for the three nearshore areas. General features of current circulation and horizontal mixing times under various wind directions and speeds were obtained for the whole harbour using the coarse-grid model. The fine-grid model (water elevations and current information on the open boundaries were obtained from the whole harbour model) then provided current patterns which were used to drive the pollutant transport model. Simulation results reveal that the current in the fine-grid model is close to the current from the coarse-grid model, while more detailed current structures are explored. The water elevations from the fine-grid model agree well with the elevations from the coarse-grid one. The impact of artificial islands was examined by studying changes in current patterns, pollutant peaks, exposure and flushing time in different locations of concern. The design proposed provides: (i) minimum change in the existing current patterns; (ii) avoidance of pollutant hot spots; and (iii) minimum changes in the flushing time of pollutants.


2009 ◽  
Vol 9 (2) ◽  
pp. 5853-5887 ◽  
Author(s):  
D. Chen ◽  
Y. Wang ◽  
M. B. McElroy ◽  
K. He ◽  
R. M. Yantosca ◽  
...  

Abstract. An updated version of the nested-grid GEOS-Chem model is developed allowing for higher horizontal (0.5°×0.667°) and vertical resolution as compared to global models. CO transport over a heavily polluted region, the Beijing-Tianjin-Hebei (BTH) city cluster in China, and the pattern of outflow from East China in summertime are investigated. Comparison of the nested-grid with global models indicates that the fine-resolution nested-grid model is capable of resolving individual cities with high associated emission intensities. The nested-grid model indicates the presence of a high CO column density over the Sichuan Basin in summer, attributable to the low-level stationary vortex associated with the Basin's topographical features. The nested-grid model provides good agreement also with measurements from a suburban monitoring site in Beijing during summer 2005. Tagged CO simulation results suggest that regional emissions make significant contributions to elevated CO levels over Beijing on polluted days and that the southeastward moving cyclones bringing northwest winds to Beijing are the key meteorological mechanisms responsible for dispersion of pollution over Beijing in summer. Overall CO fluxes to the NW Pacific from Asia are found to decrease by a factor of 3–4 from spring to summer. Much of the seasonal change is driven by decreasing fluxes from India and Southeast Asia in summer, while fluxes from East China are only 30% lower in summer than in spring. Compared to spring, summertime outflow from Chinese source regions is strongest at higher latitudes (north of 35° N). The deeper convection in summer transporting CO to higher altitudes where export is more efficient is largely responsible for enhanced export in summer.


Sign in / Sign up

Export Citation Format

Share Document