co2 monitoring
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 64)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
pp. 1420326X2110587
Author(s):  
Dadi Zhang ◽  
Er Ding ◽  
Philomena M. Bluyssen

Since the COVID-19 pandemic, the ventilation of school buildings has attracted considerable attention from the general public and researchers. However, guidance to assess the ventilation performance in classrooms, especially during a pandemic, is still lacking. Therefore, aiming to fill this gap, this study conducted a full-scale laboratory study to monitor the CO2 concentrations at 18 locations in a classroom setting under four different ventilation regimes. Additionally, a field study was carried out in two Dutch secondary schools to monitor the CO2 concentrations in the real classrooms with different ventilation regimes. Both the laboratory and field study findings showed that CO2 concentrations varied a lot between different locations in the same room, especially under natural ventilation conditions. The outcome demonstrates the need of monitoring the CO2 concentration at more than one location in a classroom. Moreover, the monitored CO2 concentration patterns for different ventilation regimes were used to determine the most representative location for CO2 monitoring in classrooms. For naturally ventilated classrooms, the location on the wall opposite to windows and the location on the front wall (nearby the teacher) were recommended. For mechanically ventilated classrooms, one measurement location seemed enough because CO2 was well-mixed under this ventilation regime.


HardwareX ◽  
2022 ◽  
pp. e00261
Author(s):  
Yannic Toschke ◽  
Janet Lusmoeller ◽  
Lars Otte ◽  
Johann Schmidt ◽  
Svenja Meyer ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 188
Author(s):  
Emmanuel Dervieux ◽  
Michaël Théron ◽  
Wilfried Uhring

Carbon dioxide (CO2) monitoring in human subjects is of crucial importance in medical practice. Transcutaneous monitors based on the Stow-Severinghaus electrode make a good alternative to the painful and risky arterial “blood gases” sampling. Yet, such monitors are not only expensive, but also bulky and continuously drifting, requiring frequent recalibrations by trained medical staff. Aiming at finding alternatives, the full panel of CO2 measurement techniques is thoroughly reviewed. The physicochemical working principle of each sensing technique is given, as well as some typical merit criteria, advantages, and drawbacks. An overview of the main CO2 monitoring methods and sites routinely used in clinical practice is also provided, revealing their constraints and specificities. The reviewed CO2 sensing techniques are then evaluated in view of the latter clinical constraints and transcutaneous sensing coupled to a dye-based fluorescence CO2 sensing seems to offer the best potential for the development of a future non-invasive clinical CO2 monitor.


2021 ◽  
pp. 130176
Author(s):  
Shahab Mafi ◽  
Amirhasan Kakaee ◽  
Behrooz Mashadi ◽  
Ashkan Moosavian ◽  
Saied Abdolmaleki ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Kellen H. Quigg ◽  
Matthew W. Wilson ◽  
Philip J. Choi
Keyword(s):  

Author(s):  
Kenta Iitani ◽  
Joel Tyson ◽  
Samyukta Rao ◽  
Sai Sathish Ramamurthy ◽  
Xudong Ge ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2 (Supplement_1) ◽  
pp. A61-A61
Author(s):  
A Rossely ◽  
A Turton ◽  
T Roebuck ◽  
S Ho ◽  
M Naughton ◽  
...  

Abstract Carbon Dioxide (CO2) monitoring is an essential part of assessing and treating disorders of hypoventilation in the sleep laboratory. While reliablity issues have been previously reported with the Transcutaneous Carbon Dioxide (TcCO2) signal, there is limited data assessing the validity of this signal or its trend in the sleep laboratory context. Therefore, this study aimed to investigate the change in TcCO2 accuracy from the beginning to the end of the sleep study in real world conditions across two different Victorian public hospital sleep laboratories that used two different TcCO2 monitors. The sample included 13 consecutive patients from Monash Health and 44 consecutive patients from Alfred Health with an average age of 64 and 56 years respectively. Arterial Blood Gas (ABG) measurements were taken prior to and following each sleep study and compared concurrently with the TcCO2 value. Bland-Altman analysis revealed an average difference between TcCO2 and PaCO2 of 3.29mmHg with agreement between -11.44 and 16.64mmHg for the TCM4 device and 1.31mmHg with agreement between -7.64 and 9.05mmHg for the TCM5 device. When accuracy was compared across time points for each patient, 46% of patients had an overnight accuracy change of ≥ 8mmHg when using the TCM4 compared with 20% when using the TCM5. It was concluded that the TcCO2 signal was un-reliable across the different monitors and that the TcCO2 trend may be difficult to interpret with confidence without blood gas calibration at the commencement and conclusion of the sleep study.


2021 ◽  
Vol 9 (08) ◽  
pp. 473-481
Author(s):  
Nur Yasmin Sofea Rosland ◽  
◽  
Khadijah Ismail ◽  
Siti Nooraya Mohd Tawil ◽  
Siti Hasnawati Jamal ◽  
...  

Carbon dioxide (CO2) which is a colourless and odourless gas, requires an efficient detection, as excessive amount in the environment would possibly leads to global warming. This work discusses on an environmentally friendly and non-toxic CO2 sensor for indoor air monitoring. The fabricated sensor is developed by using poly(3,4ethylenedioxythiophene):poly(4styrenesulfonate)/ graphene oxide (PEDOT:PSS/GO) nanocomposite. Nanocomposite characterisations are performed by using field-emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) to confirm excellent properties of PEDOT:PSS and GO as suitable materials for CO2 sensor development. Fabrication of one layer PEDOT:PSS/GO nanocomposite on environmentally friendly kaolin-coated paper substrate via dip coating method shows good electrical conductivity of 0.25 S. At room temperature, at fixed CO2 flow rate of 0.05 l/min, the fabricated sensor response time is 32 s, with sensor response and sensitivity of 0.8 and 16/l/min respectively. With fast chemiresistive response towards CO2 molecules, the fabricated sensor provides promising results for indoor CO2 monitoring.


Sign in / Sign up

Export Citation Format

Share Document