scholarly journals Optimal power flow dispatching of maritime hybrid energy system using model predictive control

2019 ◽  
Vol 158 ◽  
pp. 6183-6188 ◽  
Author(s):  
Ruoli Tang ◽  
Zhou Wu ◽  
Xin Li
2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


Author(s):  
Sujit Kumar Bhuyan ◽  
Prakash Kumar Hota ◽  
Bhagabat Panda

This paper presents the detailed modeling of various components of a grid connected hybrid energy system (HES) consisting of a photovoltaic (PV) system, a solid oxide fuel cell (SOFC), an electrolyzer and a hydrogen storage tank with a power flow controller. Also, a valve controlled by the proposed controller decides how much amount of fuel is consumed by fuel cell according to the load demand. In this paper fuel cell is used instead of battery bank because fuel cell is free from pollution. The control and power management strategies are also developed. When the PV power is sufficient then it can fulfill the load demand as well as feeds the extra power to the electrolyzer. By using the electrolyzer, the hydrogen is generated from the water and stored in storage tank and this hydrogen act as a fuel to SOFC. If the availability of the power from the PV system cannot fulfill the load demand, then the fuel cell fulfills the required load demand. The SOFC takes required amount of hydrogen as fuel, which is controlled by the PID controller through a valve. Effectiveness of this technology is verified by the help of computer simulations in MATLAB/SIMULINK environment under various loading conditions and promising results are obtained.


Sign in / Sign up

Export Citation Format

Share Document