scholarly journals Study on Thermal and Hydrodynamic Performance of a Triple Fluid Heat Exchanger with Different Passes and Rows

2019 ◽  
Vol 158 ◽  
pp. 5901-5906
Author(s):  
Navin Raja Kuppusamy ◽  
Lee Poh Seng
Author(s):  
G. Bhaskaran ◽  
H. A. Mohammed ◽  
N. H. Shuaib

A numerical study is performed to study the effects of using various types of nanofluids on a triangular shaped microchannel heat exchanger (MCHE). The performance of an aluminum MCHE with various types of nanofluids such as Al2O3, CuO, SiO2, Ag and TiO2 and diamond particles with particle volume fraction of 2% using water as base fluid is comprehensively analyzed. The three-dimensional steady, laminar developing flow and conjugate heat transfer of a balanced MCHE were solved using finite volume method. In order to maintain laminar flow in the microchannels, Re number was ranged from 100 to 800. The other parameters tested in this study include the effects of Reynolds number towards the temperature, effectiveness and pressure drop of the MCHE. It is found that nanofluids have improved the temperature profile and heat transfer rate of the MCHE. The increase in pressure drop was minimal while the thermal and hydrodynamic performance of the heat exchanger was enhanced.


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3893-3903
Author(s):  
Ravi Datt ◽  
Mangal Bhist ◽  
Alok Kothiyal ◽  
Rajesh Maithani ◽  
Anil Kumar

Experimental examination is carried out to study the turbulent heat transfer and fluid-flow characteristics in circular heat exchanger tube using combined wing with solid ring twisted tape inserts. A series of experiments has been performed with the range of Reynolds number varied from 3000 to 21000, number of twisted taped inserts, NTT, varied from 1.0 to 4.0 with constant value of other twisted tape parameters such as rings pitch ratio, dR /DT = 1.0, wing pitch ratio, PW /WT = = 3.0, and wing depth ratio, Wd /WT = 1.67. Based on the examined, turbulent heat transfer and fluid-flow in wing with combined solid ring twisted tape inserts results are compared with plain circular tube under same operating conditions. The experimental results show that the heat transfer is increased around 5.66 times than plane circular heat exchanger tube. The thermal and hydrodynamic performance parameter based on equal pumping power, ?p, was found to be highest for NTT = 3.0. The optimum value of thermal and hydrodynamic performance has been found to be 2.74 for Reynolds mumber of 3000 within the range of the parameters investigated. Multiple wings with solid rings twisted tape inserts have been also shown to be thermally as well as hydraulically better in comparison to other similar twisted tape insert geometries.


Author(s):  
Matthew Lippy ◽  
Mark Pierson

The first Molten Salt Reactor (MSR) was designed and tested at Oak Ridge National Laboratory (ORNL) in the 1960’s, but recent technological advancements now allow for new components, such as heat exchangers, to be created for the next generation of MSR’s and molten salt-cooled reactors. The primary (fuel salt-to-secondary salt) heat exchanger (PHX) design has been largely ignored up to this point; however, it is shown here that modern compact heat exchangers have the potential to make dramatic improvements over traditional shell-and-tube designs. Compact heat exchangers provide a higher effectiveness and more efficient use of material that offer a more cost-effective alternative to the massive, more expensive heat exchangers planned for the MSR. While this paper focuses on the application of compact heat exchangers on a Molten Salt Reactor, many of the analyses and results are similarly applicable to other fluid-to-fluid heat exchangers. The heat exchanger design in this study seeks to find a middle-ground between the dependable shell-and-tube design and the ultra-efficient, ultra-compact designs such as the Printed Circuit Heat Exchanger being developed today. Complex channel geometries and micro-scale dimensions in modern compact heat exchangers do not allow routine maintenance to be performed by standard procedures, so extended surfaces will be omitted and hydraulic diameters will be kept in the minichannel regime (minimum channel dimension between 200 μm and 3 mm) to allow for high-frequency eddy current inspection methods to be developed. Rather than using a “checkerboard” channel pattern, which requires complex header designs among other design challenges, row composition is homogeneous, and the borders between adjoining channels are removed to provide high aspect ratio rectangular channel cross-sections. Various plant layouts of smaller heat exchanger banks in a “modular” design are introduced, and the feasibility of casting such modules is assumed to be possible for the purposes of this research. FLUENT was used within ANSYS Workbench to find optimized heat transfer and hydrodynamic performance for straight-channel designs with two molten salts acting in pure counter-flow. Limiting the pressure drop to roughly that of ORNL’s Molten Salt Breeder Reactor’s shell-and-tube design, the compact heat exchanger design of interest in this study will lessen volume requirements, lower fuel salt volume, and decrease material usage. Compact heat exchangers have shown commercial feasibility in several industries but have yet to be assimilated into the nuclear industry. This intermediately-sized compact minichannel heat exchanger demonstrates that such a heat exchanger is viable for further testing. The original design of the MSR was an engineering marvel over 60 years ago, but several of its key components, namely the intermediate heat exchanger, must be updated in order for the MSR to reach its full potential.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Sign in / Sign up

Export Citation Format

Share Document