scholarly journals Marginal abatement cost of electricity generation from renewable energy in Thailand

2020 ◽  
Vol 6 ◽  
pp. 767-773 ◽  
Author(s):  
Phitsinee Muangjai ◽  
Wongkot Wongsapai ◽  
Rongphet Bunchuaidee ◽  
Neeracha Tridech ◽  
Det Damrongsak ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 195
Author(s):  
Ivan Oropeza-Perez ◽  
Astrid H Petzold-Rodriguez

The Mexican national electricity transmission and distribution grid (SEN, initials in Spanish) is characterized by the high interconnection between its several electricity generation plants and the millions of final consumers throughout the country. This feature, which is seen first as an adequate transmission and distribution method for electricity between producer and consumer, has the inconvenience of being highly complex when renewable energy is introduced into the SEN. The random nature of renewable energy means that coordination between the producer and consumer is difficult; therefore, these energy sources are considered by the Mexican Federal Commission of Electricity (CFE, initials in Spanish) without priority in their generation and distribution. In this document, a solution for this is given by the consideration of on-site photovoltaic production in the Mexican residential sector, setting a straightforward relationship between production and consumption, neglecting the long-distance transmission, and freeing the transmission and distribution through the SEN at certain hours of the day. Different scenarios are studied, considering the level of penetration of this renewable energy technology into the housing sector. In this way, it is found that, if 80% of the total Mexican dwellings hold a photovoltaic roof, in some seasons of the year, a large part the total national demand can be fulfilled by the photovoltaic generation if certain systems—such as bidirectional smart meters—are applied. In this sense, the results show that, if 80% of the Mexican dwellings had a photovoltaic roof, there would be a money saving of 3418 Million USD and a mitigation of 25 million tons CO2e, for 2018. With this, it is concluded that renewable energy in Mexico could provide a much greater share if the electricity is produced in the same place where it will be consumed. This might be possible in Mexico due to the high interconnection of the transmission and distribution grid, which would manage the surplus electricity generation in the dwellings in a proper manner.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2771
Author(s):  
Leszek Kotulski ◽  
Artur Basiura ◽  
Igor Wojnicki ◽  
Sebastian Siuchta

The use of formal methods and artificial intelligence has made it possible to automatically design outdoor lighting. Quick design for large cities, in a matter of hours instead of weeks, and analysis of various optimization criteria enables to save energy and tune profit stream from lighting retrofit. Since outdoor lighting is of a large scale, having luminaires on every street in urban areas, and since it needs to be retrofitted every 10 to 15 years, choosing proper parameters and light sources leads to significant energy savings. This paper presents the concept and calculations of Levelized Cost of Electricity for outdoor lighting retrofit. It is understood as cost of energy savings, it is in the range from 23.06 to 54.64 EUR/MWh, based on real-world cases. This makes street and road lighting modernization process the best green “energy source” if compared with the 2018 Fraunhofer Institute cost of electricity renewable energy technologies ranking. This indicates that investment in lighting retrofit is more economically and ecologically viable than investment in new renewable energy sources.


2012 ◽  
Vol 7 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Fabian Wagner ◽  
Markus Amann ◽  
Jens Borken-Kleefeld ◽  
Janusz Cofala ◽  
Lena Höglund-Isaksson ◽  
...  

2008 ◽  
Vol 10 (6) ◽  
pp. 985-1010 ◽  
Author(s):  
RABAH AMIR ◽  
MARC GERMAIN ◽  
VINCENT VAN STEENBERGHE

Sign in / Sign up

Export Citation Format

Share Document