scholarly journals Different Scenarios for the National Transmission Grid, Considering the Extensive Use of On-Site Renewable Energy in the Mexican Housing Sector

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 195
Author(s):  
Ivan Oropeza-Perez ◽  
Astrid H Petzold-Rodriguez

The Mexican national electricity transmission and distribution grid (SEN, initials in Spanish) is characterized by the high interconnection between its several electricity generation plants and the millions of final consumers throughout the country. This feature, which is seen first as an adequate transmission and distribution method for electricity between producer and consumer, has the inconvenience of being highly complex when renewable energy is introduced into the SEN. The random nature of renewable energy means that coordination between the producer and consumer is difficult; therefore, these energy sources are considered by the Mexican Federal Commission of Electricity (CFE, initials in Spanish) without priority in their generation and distribution. In this document, a solution for this is given by the consideration of on-site photovoltaic production in the Mexican residential sector, setting a straightforward relationship between production and consumption, neglecting the long-distance transmission, and freeing the transmission and distribution through the SEN at certain hours of the day. Different scenarios are studied, considering the level of penetration of this renewable energy technology into the housing sector. In this way, it is found that, if 80% of the total Mexican dwellings hold a photovoltaic roof, in some seasons of the year, a large part the total national demand can be fulfilled by the photovoltaic generation if certain systems—such as bidirectional smart meters—are applied. In this sense, the results show that, if 80% of the Mexican dwellings had a photovoltaic roof, there would be a money saving of 3418 Million USD and a mitigation of 25 million tons CO2e, for 2018. With this, it is concluded that renewable energy in Mexico could provide a much greater share if the electricity is produced in the same place where it will be consumed. This might be possible in Mexico due to the high interconnection of the transmission and distribution grid, which would manage the surplus electricity generation in the dwellings in a proper manner.

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4270
Author(s):  
Gianpiero Colangelo ◽  
Gianluigi Spirto ◽  
Marco Milanese ◽  
Arturo de Risi

In the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.


2021 ◽  
Vol 11 (9) ◽  
pp. 3814
Author(s):  
Poushali Pal ◽  
Parvathy Ayalur Krishnamoorthy ◽  
Devabalaji Kaliaperumal Rukmani ◽  
S. Joseph Antony ◽  
Simon Ocheme ◽  
...  

Renewable energy sources prevail as a clean energy source and their penetration in the power sector is increasing day by day due to the growing concern for climate action. However, the intermittent nature of the renewable energy based-power generation questions the grid security, especially when the utilized source is solar radiation or wind flow. The intermittency of the renewable generation can be met by the integration of distributed energy resources. The virtual power plant (VPP) is a new concept which aggregates the capacities of various distributed energy resources, handles controllable and uncontrollable loads, integrates storage devices and empowers participation as an individual power plant in the electricity market. The VPP as an energy management system (EMS) should optimally dispatch the power to its consumers. This research work is proposed to analyze the optimal scheduling of generation in VPP for the day-ahead market framework using the beetle antenna search (BAS) algorithm under various scenarios. A case study is considered for this analysis in which the constituting energy resources include a photovoltaic solar panel (PV), micro-turbine (MT), wind turbine (WT), fuel cell (FC), battery energy storage system (BESS) and controllable loads. The real-time hourly load curves are considered in this work. Three different scenarios are considered for the optimal dispatch of generation in the VPP to analyze the performance of the proposed technique. The uncertainties of the solar irradiation and the wind speed are modeled using the beta distribution method and Weibull distribution method, respectively. The performance of the proposed method is compared with other evolutionary algorithms such as particle swarm optimization (PSO) and the genetic algorithm (GA). Among these above-mentioned algorithms, the proposed BAS algorithm shows the best scheduling with the minimum operating cost of generation.


1987 ◽  
Vol 20 (1) ◽  
pp. 18-25
Author(s):  
P Gilbert

The transmission and distribution system operated by British Gas plc is the largest integrated pipeline system in Europe. The whole system comprises a national transmission system which carries gas from five terminals to the twelve gas regions. Each region in turn carries the gas through a regional transmission system into a distribution grid and thence onto its customers. The national, regional and distribution system all present the instrument engineer with different technical challenges because of the way in which they have been built and are operated, however, it is simplest to characterise them by their process conditions. The operating pressure is highest in the national transmission system being up to 75 bar, in the regional transmission system the pressure is usually less than 37 bar, and in the distribution grid it is less than 7 bar. In general, the pipe diameters decrease from the national system downwards, and the measured flowrates are lowest in the distribution grids. This paper is concerned only with instrumentation on the national transmission system. The discussion will cover current technology which is typical of that being installed at present, and concentrates on the more commonly found instrumentation. The paper begins with a brief history of development of the national transmission system and a description of how it is operated. This is followed by a discussion on the application of computers to the control of unmanned installations. A section concerning the measurement of pressure and its application to the control of the system comes next. The main part of the paper contains an analysis of high accuracy flowmetering and the paper concludes with some comments on developments in instrumentation and their application to changing operation of the national transmission system.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document