scholarly journals Prediction of the wellhead uplift caused by HT–HP oil and gas production in deep-water wells

2021 ◽  
Vol 7 ◽  
pp. 740-749
Author(s):  
Shuangjin Zheng ◽  
Wei Li ◽  
Chenguang Cao ◽  
Chao Wang
2006 ◽  
Vol 46 (1) ◽  
pp. 395
Author(s):  
R. Freij-Ayoub ◽  
M. Rivero ◽  
E. Nakagawa

Offshore exploration and production is going to deep and ultra deep waters, driven by the depletion of continental shelf reserves and the high demand for hydrocarbons. This move requires the continued extension of existing technologies and the development of new technologies that will make the investment economically viable. Innovative flow assurance technology is needed to support ultra deepwater production, particularly within the concept of platform free fields where there is a need to minimise interventions.Hydrates present one of the major challenges in flow assurance. Deep and ultra deep water operations together with long tiebacks present the ideal conditions for the formation of hydrates which can result in pipeline blockage and serious operational and safety concerns. Methods to combat hydrates range between control and management. One main technique has been to produce the hydrocarbons outside of the thermodynamic stability domain of hydrates. This is achieved by keeping the temperature of the hydrocarbon above the stability temperature of hydrates by insulating the pipe line, or by introducing heat to the hydrocarbon. Another efficient way of combating hydrates has been to shift the hydrate phase boundary to lower temperatures by using chemicals like methanol and mono ethylene glycol (MEO) which are known as thermodynamic inhibitors. Within the last decade a new generation of hydrate inhibitors called low dosage hydrate inhibitors (LDHI) has been introduced. One type of these LDHI are kinetic hydrate inhibitors (KHI) that, when used in small concentrations, slow down hydrate growth by increasing the induction time for their formation and preventing the start of the rapid growth stage. Another approach to managing hydrates has been to allow them to form in a controlled manner and transport the hydrate-hydrocarbon slurry in the production pipe. In this paper we describe the various approaches used to combat hydrates to ensure flow assurance and we discuss the cons and pros of every approach and the technology gaps.


1998 ◽  
Vol 38 (1) ◽  
pp. 855
Author(s):  
K.P. Thiagarajan

Offshore oil and gas production is now reaching to great depths, in excess of 1000 m, in the Gulf of Mexico and the Campos Basin, offshore Brazil. It will not be long before Australian companies look towards probable reserves in deeper waters that still remain within the Australian exclusive economic zone. Production concepts for deep and ultra deep water thus need to be studied and researched, and a constant watch should be maintained on developments around the world in this area.This paper presents two popular, and constantly evolving, concepts for deep water, namely: tension leg platforms (TLP) and spars. Tension leg platforms have been in existence for about 14 years, and are actively sought for deep water by worldwide operating companies. They are vertically moored by means of taut tethers which present interesting motion characteristics and unique hydrodynamic problems. Spar platforms are currently being installed for production purposes. These are large deep draft cylindrical structures moored by catenary or taut spread mooring systems. Physical details, advantages and limitations of both systems are discussed.While many aspects of these production systems are now understood, there are still several unknowns. Deeper waters translate to newer problems. Potential problems of the future are discussed in this paper, and research needs are highlighted.


Author(s):  
Jian Su

Flow assurance is essential for economic and reliable production of oil and gas in deep water environment. The present paper discusses the complex physical phenomena involved in deep water production and the challenging engineering problems of flow assurance; and reviews recent works to understand the processes and tackle the problems. The following topics are discussed: flow regime transition, pressure drop, flow pattern, slug flow and severe slugging, transient multiphase flow, thermal insulation, insulation materials, active heating and wax deposition.


Author(s):  
Pedro Vassalo Maia da Costa ◽  
Alvaro Maia da Costa ◽  
Julio Romano Meneghini ◽  
Kazuo Nishimoto ◽  
Gustavo Assi ◽  
...  

Abstract In 2006, giant oilfields were discovered in Brazil in a water depth of ∼ 2200 m and under a caprock of 2000 m of continues salt rock overlaying the reservoirs, called pre-salt. Currently more than a half of the Brazilian oil and gas production comes from these reservoirs. However, some of these assets have big Oil & Gas ratio with a high level of CO2 contamination, which are currently being reinjected in the reservoirs. This procedure gradually increases the CO2 content associated with the oil extracted, reducing well productivity and leading to high costs of CO2 and CH4 separation by the membrane technology. The Research Center for Gas Innovation (RCGI) located at the State University of São Paulo in Brasil, sponsored by Shell Brazil, is developing a technology that uses the thick layer of salt rock overlying the pre-salt reservoirs to build caverns where the contaminated gas will be injected and decontaminated. After 2 years of extensive research, several studies have been carried out to analyze the main critical aspects of the technology in order to evaluate its feasibility, and now it has been decided to advance to the field proof stage. The salt dome studied can accommodate the construction of 15 caverns, thus providing the confinement of approximately 108 million tons of CO2. Before the system be construct in full scale, it was decided to initially build an experimental cavern with smaller size to obtain field parameters of the final design of the caverns. This paper describes this development denominated Offshore Salt Cavern Ultra-deep Water CCS System, that aims to perform the natural gas storage, a natural gravitational separation between CO2 / CH4 inside the caverns, and the confinement of CO2 (CCS). It presents important results related to structural integrity analysis of the giant and experimental caverns, well design using the same methodology applied in more than 200 projects of the pre-salt oil wells, instrumentation plan of the experimental cavern, storage capacities and other relevant data. If the economics proves feasible, this offshore gas storage station will be the first of its kind and possibly the biggest CCS Project in the world.


1982 ◽  
Vol 22 (1) ◽  
pp. 112 ◽  
Author(s):  
Einar Tore Moe ◽  
Odd A. Olsen

The oil and gas exploration industry continually discovers energy resources at greater water depths, and in many of the structures now being designed for offshore oil and gas production the anchoring system is one of the key components, having significant influence on operational characteristics as well as safety.The best possible understanding of the problems involved in anchoring is therefore essential, and an evaluation of a design for deep-water long-term anchoring should include:evaluation of possible excitation sources at actual site (wind, waves, current)dynamic analysis of the structure and mooring linesevaluation of soil properties and anchor behaviourevaluation of fatigue strength of mooring linesevaluation of conditions for corrosion and corrosion protection.In this paper 'the state of the art' within these problem areas is discussed. Sample calculations of global and local dynamics of the mooring lines are compared with results from conventional quasistatic analysis to demonstrate the importance of taking into account dynamic phenomena and oscillations caused by wind, waves and current action. Areas for further research are also discussed.


Author(s):  
Hilman Salleh

FPSOs have been a popular choice for deep water oil and gas production with many installations worldwide. Many of these floating production systems were tanker conversions and they are now approaching their mid-life or end of life hence, facing ageing issues relating to asset integrity. Concurrently, there are also requirements for these floating production systems to operate to operate beyond the design life. As most of this maintenance and refurbishment work is to be done while on station, there needs to be a structured process to ensure that all key areas of concerns are reviewed. This paper outlines the strategy available and addresses the issues and possible solutions to manage the life extension and ageing of FPSOs.


Sign in / Sign up

Export Citation Format

Share Document