scholarly journals Economic and environmental estimated assessment of power production from municipal solid waste using anaerobic digestion and landfill gas technologies

2021 ◽  
Vol 7 ◽  
pp. 4460-4469
Author(s):  
Weiping Huang ◽  
Hadi Fooladi

Sustainable energy supply is one of the main challenges that people will face over the coming decades. Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. Currently it is the largest global contributor of renewable energy, and has significant potential to expand the production of heat, electricity and fuels for transport. Municipal solid waste is an enormous renewable resource that has high energy capacity because it contains a high proportion of biomass materials. This kind of sustainable waste management typically called waste-to-energy is critical for reducing the reliance on fossil fuels and non-renewable materials. Waste-to-energy is a reliable and alternative form of energy that has become the basis for many of the most successful solid waste management systems in many countries. Energy recovery from waste is the conversion of waste materials into useable heat, electricity, or fuel through a variety of processes. This study assesses the potential contribution of waste-to-energy facilities to total Gaza peak power demand up to the year 2040 based on three scenarios: incineration, anaerobic digestion and landfill gas recovery. Three dumping sites are distributed along the Gaza Strip, Johr El-deek, Deir El-balah and Rafah. The analysis shows a potential to produce about 1100 MWh per day based on the anaerobic digestion scenario, about 580 MWh per day based on incineration of municipal solid waste scenario, and about 130 MWh per day based on landfill gas recovery scenario. These values accounts to 275%, 145% and 33% of the year 2014 peak electricity demand of 400 megawatt from the three scenarios, respectively. The forecasted results of the three scenarios can be used to design future waste-to- energy facilities in the main cities of the Gaza Strip. The production cost of energy was 7¢/kWh, 5¢/kWh and 17¢/kWhfor incineration, anaerobic digestion and landfill gas recovery scenarios, respectively.


2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


2019 ◽  
Vol 11 (7) ◽  
pp. 3293-3301
Author(s):  
Mingyu Qian ◽  
Ye Zhou ◽  
Yixin Zhang ◽  
Zhenxin Wang ◽  
Ruihua Li ◽  
...  

1993 ◽  
Vol 28 (2) ◽  
pp. 27-34 ◽  
Author(s):  
G. Boari ◽  
I. M. Mancini ◽  
E. Trulli

Sanitary landfills of municipal solid waste (MSW) might be used to reduce the storage volume required at plants giving year-round treatment of olive oil mill effluent (OME). A landfill in the methanogenic stage could act as an anaerobic filter and reduce the pollutional load of the OME while also acting as a temporary storage tank. In the present work, a lysimeter in pilot scale was used to simulate a cell of a sanitary landfill. It was filled with MSW screened by a 80 mm mesh sieve mixed to municipal sludge. Results show that when OME was spread on the top of the lysimeter at a loading rate not exceeding 0.4 kgCOD/d/m3 of reactor steady methanogenic activity was maintained in the layers of refuse and a 70% removal of COD was obtained in the OME leachate collected. Higher loading rates reduced methanogenic activity and COD removal efficiency. Nevertheless, the OME collected from the bottom of the landfill was more easily treated by anaerobic digestion than was the raw OME.


Sign in / Sign up

Export Citation Format

Share Document