scholarly journals Potential Contribution of Waste-to-Energy to Power Consumption in the Gaza Strip

Sustainable energy supply is one of the main challenges that people will face over the coming decades. Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. Currently it is the largest global contributor of renewable energy, and has significant potential to expand the production of heat, electricity and fuels for transport. Municipal solid waste is an enormous renewable resource that has high energy capacity because it contains a high proportion of biomass materials. This kind of sustainable waste management typically called waste-to-energy is critical for reducing the reliance on fossil fuels and non-renewable materials. Waste-to-energy is a reliable and alternative form of energy that has become the basis for many of the most successful solid waste management systems in many countries. Energy recovery from waste is the conversion of waste materials into useable heat, electricity, or fuel through a variety of processes. This study assesses the potential contribution of waste-to-energy facilities to total Gaza peak power demand up to the year 2040 based on three scenarios: incineration, anaerobic digestion and landfill gas recovery. Three dumping sites are distributed along the Gaza Strip, Johr El-deek, Deir El-balah and Rafah. The analysis shows a potential to produce about 1100 MWh per day based on the anaerobic digestion scenario, about 580 MWh per day based on incineration of municipal solid waste scenario, and about 130 MWh per day based on landfill gas recovery scenario. These values accounts to 275%, 145% and 33% of the year 2014 peak electricity demand of 400 megawatt from the three scenarios, respectively. The forecasted results of the three scenarios can be used to design future waste-to- energy facilities in the main cities of the Gaza Strip. The production cost of energy was 7¢/kWh, 5¢/kWh and 17¢/kWhfor incineration, anaerobic digestion and landfill gas recovery scenarios, respectively.

2019 ◽  
Vol 90 ◽  
pp. 01007
Author(s):  
Farizal ◽  
Tammarar Ekky

This study determines the tipping fee of municipal solid waste in the city of Depok. Two methods used to determine the fee were the income and outcome approach, and the limited resource approach. Two conditions were assumed (i.e., waste management and landfill gas bioreactor availability). From the results, the ideal tipping fee was 97,704 IDR/tonne and the application of a landfill gas reactor could boost income, thus reduced the amount of the fee collected, especially in the early years of the landfill bioreactor in operation. The fees were 40,032 and 63,337 IDR/tonne for scenario 1 and 2, respectively.


Author(s):  
Animesh Sharma

Abstract: This paper aims at determining the recent composition of municipal solid waste of Gwalior city and provide sa notion to take action and proposed economical & viable waste management technologies and techniques for effective utilization of waste. In this study, MSW samples were collected from the Kedarpur landfill site situated at Shivpuri link road and were analyzed for physical composition. The study reveals that Gwalior city produces a high quantity of biodegradable waste (58.03%) with high moisture content (68.60%) and plastic waste (15.96%). Waste composition and characterization disclosed that vigorous segregation is required before dispatching the waste for different treatment processes or landfilling. Based on this study, we may conclude that the combined mechanism of planning and implementation of waste-to-energy (WTE) technologies and treatment such as Anaerobic Digestion/ Bio-methanation, Material recovery facility (MRF), and Bio-remediation/Bio-mining for old existing waste and new generating waste is needed for upgrading the waste management scenario of the city. Keywords: Municipal solid waste (MSW), Kedarpur Landfill site, Composition & Characteristics, Waste to Energy, Anaerobic Digestion, Bio-Mining, Recycling & Materials Recovery Facility (MRF)


Climate ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 100 ◽  
Author(s):  
Maha Alsabbagh

Mitigating climate change to limit the global temperature increase (relative to pre-industrial temperatures) to 2 °C is receiving considerable attention around the world. Here, historical and future carbon dioxide equivalent (CO2e) emissions from municipal solid waste (MSW) in Bahrain were calculated using the revised Intergovernmental Panel on Climate Change (IPCC) 1996 and IPCC 2006 methods. The extent to which waste-to-energy (WtE) technologies can contribute to climate change mitigation was assessed by performing a multicriteria analysis. The results indicated that CO2e emissions from MSW in Bahrain have been increasing since the Askar landfill was constructed in 1986. Emission recalculations indicated that CO2e emissions from MSW contribute 6.2% of total emissions in Bahrain rather than the 11.6% reported in the second national communication. Methane emissions from MSW in 2030 are predicted to be 22–63 Gg. The WtE technologies anaerobic digestion and landfill gas recovery gave the best and gasification the worst multicriteria analysis model results. A database of WtE plants around the world should be compiled to allow decisions around the world to be based on best practices. The potential for maximizing energy recovery and decreasing costs needs to be investigated to allow WtE plants to compete better with renewable and nonrenewable energy sources.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1224
Author(s):  
Nwabunwanne Nwokolo ◽  
Patrick Mukumba ◽  
KeChrist Obileke ◽  
Matthew Enebe

Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.


Author(s):  
Cody Taylor ◽  
Emily Bedwell ◽  
Amy Guy ◽  
David Traeger

As awareness regarding the potential threat of climate change has grown in the US, many local governments and businesses are being asked to consider the climate implications of their actions. In addition, many leaders, including solid waste managers, who are not yet pressured from the outside, consider it prudent to account for their greenhouse gas (GHG) emissions and consider it a proactive measure to assess climate risks and opportunities and to show commitment to progress. Sources of GHG emissions in the solid waste management process include: waste transport vehicles, composting facilities, processing equipment, landfills, and waste-to-energy facilities. Over the past 25 years, the levels of GHG emissions have been reduced through technological advancements in waste-to-energy, environmental regulations such as the Clean Air Act, landfill gas capture and control, and the promotion of recycling and reuse. There are many opportunities for solid waste managers to further reduce their GHG emissions levels, including promotion of waste-to-energy facilities as part of a low-carbon solid waste management plan. Waste-to-energy may also, in the future, offer potential revenue from the sale of renewable energy credits and carbon credits in emerging emissions trading programs.


2020 ◽  
Vol 12 (14) ◽  
pp. 5711
Author(s):  
Laith A. Hadidi ◽  
Ahmed Ghaithan ◽  
Awsan Mohammed ◽  
Khalaf Al-Ofi

The need for resilience and an agile waste management system in Saudi Arabia is vital to control safely the rapid growth of its municipal solid waste (MSW) with minimal environment toll. Similarly, the domestic energy production in Saudi Arabia is thriving and putting a tremendous pressure on its huge reserves of fossil oil. Waste to energy (WTE) plants provides a golden opportunity for Saudi Arabia; however, both challenges (MSW mitigation and energy production) are usually looked at in isolation. This paper at first explores the potential of expanding the WTE energy production in the eastern province in Saudi Arabia under two scenarios (complete mass burn with and without recycling). Secondly, this study analyzes the effect of 3Rs (reduce, reuse, recycle) practices implementation in a residential camp (11,000 population) to influence the behavior of the camp’s citizens to reduce their average waste (kg/capita). The results of the 3R-WTE framework show a potential may reach 254 Megawatt (MW) of electricity by year 2030. The 3R system implementation in the camp reduced MSW production from 5,625 tons to 3000 tons of household waste every year, which is considered lower than what the surrounding communities to be produced in the same area.


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


Sign in / Sign up

Export Citation Format

Share Document