scholarly journals A DPS-PLL based rotor position estimation method for permanent magnet wind turbine

2021 ◽  
Vol 7 ◽  
pp. 502-507
Author(s):  
Linxin Yu ◽  
Dazhi Wang ◽  
Zhen Liu ◽  
Di Zheng ◽  
Wenhui Li
2013 ◽  
Vol 133 (9) ◽  
pp. 902-908 ◽  
Author(s):  
Toshifumi Sakai ◽  
Kiyoshi Sakamoto ◽  
Daigo Kaneko ◽  
Junnosuke Nakatsugawa ◽  
Yoshitaka Iwaji

Author(s):  
Chien-Feng Wu ◽  
Shir-Kuan Lin

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 9pt; mso-fareast-font-family: 新細明體; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA; mso-bidi-font-style: italic;" lang="EN-US">This paper presents a high efficiency initial rotor position estimation method for Permanent Magnet Synchronous Motors (PMSM). The approach uses the viable inductance model to analyze the optimal motor injection sine wave frequency as the motor’s test signal. Unlike other high-frequency injection methods, this approach does not require trial and error experiments. The injection frequency is identified by programmable simulations using Matlab. Experimental evaluation of 3-phase PMSM showed that this injection frequency optimization method works successfully. The proposed method can find the optimal injection frequency without experimentation, and outperforms other test signals in terms of accuracy, vibration quantity and noise. This microprocessor-developed 3-phase PMSM control driver can be applied to electrical appliances, machine tools and automation.</span>


Sign in / Sign up

Export Citation Format

Share Document